8-BIT SINGLE-CHIP MICROCONTROLLERS

DESCRIPTION

The μ PD78F0034B is a member of the μ PD780034A Subseries in the $78 \mathrm{~K} / 0$ Series, and is equivalent to the μ PD780034A (expanded-specification product) but with flash memory in place of internal ROM.

The μ PD78F0034BY is a member of the μ PD780034AY Subseries, featuring flash memory in place of the internal ROM of the μ PD780034AY.

The $\mu \mathrm{PD} 78 \mathrm{~F} 0034 \mathrm{~B}(\mathrm{~A})$ and $78 \mathrm{~F} 0034 \mathrm{BY}(\mathrm{A})$ are products to which a quality assurance program more stringent than that used for the μ PD78F0034B and 78F0034BY (standard models) is applied (NEC Electronics classifies these products as "special" quality grade models).

The μ PD78F0034B, 78F0034BY, $78 \mathrm{~F} 0034 \mathrm{~B}(\mathrm{~A})$, and $78 \mathrm{~F} 0034 \mathrm{BY}(\mathrm{A})$ incorporate flash memory, which can be programmed and erased while mounted on the board.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.
μ PD780024A, 780034A, 780024AY, 780034AY Subseries User's Manual: U14046E
78K/0 Series Instruction User's Manual: U12326E

FEATURES

- Pin-compatible with mask ROM versions (except Vpp pin)
- Flash memory: $\quad 32 \mathrm{~KB}^{\text {Note }}$
- Internal high-speed RAM: 1,024 bytes ${ }^{\text {Note }}$
- Supply voltage: $\quad V_{D D}=1.8$ to 5.5 V

Note The flash memory and internal high-speed RAM capacities can be changed with the memory size switching register (IMS).

Remark For the differences between the flash memory and the mask ROM versions, refer to 4. DIFFERENCES BETWEEN μ PD78F0034B, 78F0034BY, AND MASK ROM VERSIONS.

[^0]
ORDERING INFORMATION

Part Number	Package	Internal ROM
μ PD78F0034BGB-8EU	64-pin plastic LQFP (10×10)	Flash memory
μ PD78F0034BGC-8BS	64-pin plastic LQFP (14×14)	Flash memory
μ PD78F0034BGK-9ET	64-pin plastic TQFP (12×12)	Flash memory
μ PD78F0034BF1-CN3	73-pin plastic FBGA (9×9)	Flash memory
μ PD78F0034BGB(A)-8EU	64-pin plastic LQFP (10×10)	Flash memory
μ PD78F0034BGC(A)-8BS	64-pin plastic LQFP (14×14)	Flash memory
μ PD78F0034BGK(A)-9ET	64-pin plastic TQFP (12×12)	Flash memory
μ PD78F0034BYGB-8EU	64-pin plastic LQFP (10×10)	Flash memory
μ PD78F0034BYGC-8BS	64-pin plastic LQFP (14×14)	Flash memory
μ PD78F0034BYGK-9ET	64-pin plastic TQFP (12×12)	Flash memory
μ PD78F0034BYF1-CN3	73-pin plastic FBGA (9×9)	Flash memory
μ PD78F0034BYGB(A)-8EU	64-pin plastic LQFP (10×10)	Flash memory
μ PD78F0034BYGC(A)-8BS	64-pin plastic LQFP (14×14)	Flash memory
μ PD78F0034BYGK(A)-9ET	64-pin plastic TQFP (12×12)	Flash memory

QUALITY GRADE

Part Number	Package	Quality Grade
μ PD78F0034BGB-8EU	64-pin plastic LQFP (10×10)	Standard
μ PD78F0034BGC-8BS	64-pin plastic LQFP (14×14)	Standard
μ PD78F0034BGK-9ET	64-pin plastic TQFP (12×12)	Standard
μ PD78F0034BF1-CN3	73-pin plastic FBGA (9×9)	Standard
μ PD78F0034BGB(A)-8EU	64-pin plastic LQFP (10×10)	Special
μ PD78F0034BGC(A)-8BS	64-pin plastic LQFP (14×14)	Special
μ PD78F0034BGK(A)-9ET	64-pin plastic TQFP (12×12)	Special
μ PD78F0034BYGB-8EU	64-pin plastic LQFP (10×10)	Standard
μ PD78F0034BYGC-8BS	64-pin plastic LQFP (14×14)	Standard
μ PD78F0034BYGK-9ET	64-pin plastic TQFP (12×12)	Standard
μ PD78F0034BYF1-CN3	73-pin plastic FBGA (9×9)	Standard
μ PD78F0034BYGB(A)-8EU	64-pin plastic LQFP (10×10)	Special
μ PD78F0034BYGC(A)-8BS	64-pin plastic LQFP (14×14)	Special
μ PD78F0034BYGK(A)-9ET	64-pin plastic TQFP (12×12)	Special

[^1]
CORRESPONDENCE BETWEEN MASK ROM PRODUCTS AND FLASH MEMORY PRODUCTS

- μ PD780024A, 780034A Subseries

Mask ROM Products	Flash Memory Products
Expanded-specification products of $\mu \mathrm{PD} 780021 \mathrm{~A}, 780022 \mathrm{~A}, 780023 \mathrm{~A}, 780024 \mathrm{~A}$ Expanded-specification products of $\mu \mathrm{PD} 780031 \mathrm{~A}, 780032 \mathrm{~A}, 780033 \mathrm{~A}, 780034 \mathrm{~A}$	$\mu \mathrm{PD} 78 \mathrm{~F} 0034 \mathrm{~B}$
Conventional products of $\mu \mathrm{PD} 780021 \mathrm{~A}, 780022 \mathrm{~A}, 780023 \mathrm{~A}, 780024 \mathrm{~A}$ Conventional products of $\mu \mathrm{PD} 780031 \mathrm{~A}, 780032 \mathrm{~A}, 780033 \mathrm{~A}, 780034 \mathrm{~A}$	$\mu \mathrm{PD} 78 \mathrm{~F} 0034 \mathrm{~A}$
Expanded-specification products of $\mu \mathrm{PD} 780021 \mathrm{~A}(\mathrm{~A}), 780022 \mathrm{~A}(\mathrm{~A}), 780023 \mathrm{~A}(\mathrm{~A}), 780024 \mathrm{~A}(\mathrm{~A})$ Expanded-specification products of $\mu \mathrm{PD} 780031 \mathrm{~A}(\mathrm{~A}), 780032 \mathrm{~A}(\mathrm{~A}), 780033 \mathrm{~A}(\mathrm{~A}), 780034 \mathrm{~A}(\mathrm{~A})$	$\mu \mathrm{PD} 78 \mathrm{~F} 0034 \mathrm{~B}(\mathrm{~A})$
Conventional products of $\mu \mathrm{PD} 780021 \mathrm{~A}(\mathrm{~A}), 780022 \mathrm{~A}(\mathrm{~A}), 780023 \mathrm{~A}(\mathrm{~A}), 780024 \mathrm{~A}(\mathrm{~A})$ Conventional products of $\mu \mathrm{PD} 780031 \mathrm{~A}(\mathrm{~A}), 780032 \mathrm{~A}(\mathrm{~A}), 780033 \mathrm{~A}(\mathrm{~A}), 780034 \mathrm{~A}(\mathrm{~A})$	$\mu \mathrm{PD} 78 \mathrm{~F} 0034 \mathrm{~B}(\mathrm{~A})$

Caution The μ PD78F0034B(A) and conventional products of the μ PD780021A(A), 780022A(A), 780023A(A), 780024A(A) and μ PD780031A(A), 780032A(A), 780033A(A), and 780034A(A) differ in the operating frequency ratings. When using the mask ROM versions in place of the flash memory versions, take note of the power supply voltage and operating frequency used.

Remarks 1. The μ PD78F0034B, 78F0034B(A) and 78F0034A differ in the operating frequency ratings and communication mode of the flash memory programming. Refer to 5 . DIFFERENCES BETWEEN μ PD78F0034B, 78F0034BY AND μ PD78F0034A, 78F0034AY.
2. The expanded-specification products and conventional products of the mask ROM versions differ in the operating frequency ratings. Refer to the data sheets of the products.
3. The special grade version of the μ PD78F0034A is not provided (only the standard grade version is provided).

- μ PD780024AY, 780034AY Subseries

Mask ROM Products	Flash Memory Products
$\mu \mathrm{PD} 780021 \mathrm{AY}, 780022 \mathrm{AY}, 780023 \mathrm{AY}, 780024 \mathrm{AY}$ $\mu \mathrm{PD} 780031 \mathrm{AY}, 780032 \mathrm{AY}, 780033 \mathrm{AY}, 780034 \mathrm{AY}$	$\mu \mathrm{PD} 78 \mathrm{~F} 0034 \mathrm{AY}$
$\mu \mathrm{PD} 780021 \mathrm{AY}(\mathrm{A}), 780022 \mathrm{AY}(\mathrm{A}), 780023 \mathrm{AY}(\mathrm{A}), 780024 \mathrm{AY}(\mathrm{A})$	$\mu \mathrm{PD} 78 \mathrm{~F} 0034 \mathrm{BY}$
$\mu \mathrm{PD} 780031 \mathrm{AY}(\mathrm{A}), 780032 \mathrm{AY}(\mathrm{A}), 780033 \mathrm{AY}(\mathrm{A}), 780034 \mathrm{AY}(\mathrm{A})$	

Remarks 1. The μ PD78F0034BY, 78F0034BY(A) and 78F0034AY differ in the communication mode of the flash memory programming. Refer to 5. DIFFERENCES BETWEEN μ PD78F0034B, 78F0034BY AND μ PD78F0034A, 78F0034AY.
2. The expanded-specification products of the μ PD780024AY, 780034AY Subseries are not provided (only the conventional products are provided).
3. The special grade version of the μ PD78F0034A is not provided (only the standard grade version is provided)

78K/0 SERIES LINEUP

The products in the 78K/0 Series are listed below. The names enclosed in boxes are subseries names.

Remark VFD (Vacuum Fluorescent Display) is referred to as FIPTM (Fluorescent Indicator Panel) in some documents, but the functions of the two are same.

The major functional differences among the subseries are listed below.

- Non-Y subseries

Fubseries Name		ROM Capacity (Bytes)	Timer				8-Bit A/D	$\begin{gathered} 10-\mathrm{Bit} \\ \mathrm{~A} / \mathrm{D} \end{gathered}$	$\begin{gathered} \text { 8-Bit } \\ \text { D/A } \end{gathered}$	Serial Interface	I/O	Vod MIN. Value	External Expansion	
			16-Bit	Watch	WDT									
Control	μ PD78075B		32 K to 40 K	4 ch	1 ch	1 ch	1 ch	8 ch	-	2 ch	3 ch (UART: 1 ch$)$	88	1.8 V	\checkmark
	μ PD78078	48 K to 60 K												
	μ PD78070A	-	61									2.7 V		
	μ PD780058	24 K to 60 K	2 ch	3 ch (time-division UART: 1 ch)							68	1.8 V		
	μ PD78058F	48 K to 60 K		3 ch (UART: 1 ch)							69	$\begin{array}{\|c\|} \hline 2.7 \mathrm{~V} \\ 2.0 \mathrm{~V} \end{array}$		
	μ PD78054	$40 \mathrm{~K} \text { to } 48 \mathrm{~K} \mid$												
	μ PD780065			-						4 ch (UART: 1 ch)	60	2.7 V		
	μ PD780078	48 K to 60 K			2 ch			-	8 ch	3 ch (UART: 2 ch)	52	1.8 V		
	μ PD780034A	8 K to 32 K			1 ch					3 ch (UART: 1 ch)	51			
	μ PD780024A							8 ch	-					
	μ PD780034AS							-	4 ch		39		-	
	μ PD780024AS							4 ch	-					
	μ PD78014H							8 ch		2 ch	53		\checkmark	
	μ PD78018F	8 K to 60 K												
	μ PD78083	8 K to 16 K			-	-				1 ch (UART: 1 ch)	33		-	
Inverter control	μ PD780988	16 K to 60 K	3 ch	Note	-	1 ch	-	8 ch	-	3 ch (UART: 2 ch$)$	47	4.0 V	\checkmark	
VFD	μ PD780208	32 K to 60 K	2 ch	1 ch	1 ch	1 ch	8 ch	-	-	2 ch	74	2.7 V	-	
	μ PD780232	16 K to 24 K	3 ch	-	-		4 ch				40	4.5 V		
	μ PD78044H	32 K to 48 K	2 ch	1 ch	1 ch		8 ch			1 ch	68	2.7 V		
	μ PD78044F	16 K to 40 K								2 ch				
LCD	μ PD780354	24 K to 32 K	4 ch	1 ch	1 ch	1 ch	-	8 ch	-	3 ch (UART: 1 ch)	66	1.8 V	-	
drive	μ PD780344						8 ch	-						
	μ PD780338	48 K to 60 K	3 ch	2 ch			-	10 ch	1 ch	2 ch (UART: 1 ch)	54			
	μ PD780328										62			
	μ PD780318										70			
	μ PD780308	48 K to 60 K	2 ch	1 ch			8 ch	-	-	3 ch (time-division UART: 1 ch)	57	2.0 V		
	μ PD78064B	32 K								2 ch (UART: 1 ch)				
	μ PD78064	16 K to 32 K												
Bus	μ PD780948	60 K	2 ch	2 ch	1 ch	1 ch	8 ch	-	-	3 ch (UART: 1 ch)	79	4.0 V	\checkmark	
interface	$\mu \mathrm{PD78098B}$	40 K to 60 K		1 ch					2 ch		69	2.7 V	-	
supported	μ PD780816	32 K to 60 K		2 ch			12 ch		-	2 ch (UART: 1 ch)	46	4.0 V		
Meter control	μ PD780958	48 K to 60 K	4 ch	2 ch	-	1 ch	-	-	-	2 ch (UART: 1 ch)	69	2.2 V	-	
Dashboard control	μ PD780852 $\mu \mathrm{PD} 780828 \mathrm{~B}$	32 K to 40 K 32 K to 60 K	3 ch	1 ch	1 ch	1 ch	5 ch	-	-	3 ch (UART: 1 ch)	56 59	4.0 V	-	

Note 16-bit timer: 2 channels
10-bit timer: 1 channel

- Y subseries

Subseries Name		ROM Capacity (Bytes)	Timer				$\begin{array}{\|c\|} 8-B i t \\ \text { A/D } \end{array}$	$\begin{array}{\|c\|} \hline 10-\mathrm{Bit} \\ \mathrm{~A} / \mathrm{D} \\ \hline \end{array}$	$\begin{gathered} \text { 8-Bit } \\ \text { D/A } \end{gathered}$	Serial Interface	I/O	VDD MIN. Value	External Expansion	
		8-Bit	16-Bit	Watch	WDT									
Control	$\mu \mathrm{PD} 78078 \mathrm{Y}$		48 K to 60 K	4 ch	1 ch	1 ch	1 ch	8 ch	-	2 ch	$3 \mathrm{ch}\left(\right.$ UART: $\left.1 \mathrm{ch}, \mathrm{I}^{2} \mathrm{C}: 1 \mathrm{ch}\right)$	88	1.8 V	\checkmark
	μ PD78070AY	-	61									2.7 V		
	$\mu \mathrm{PD} 780018 \mathrm{AY}$	48 K to 60 K	-							$3 \mathrm{ch}\left({ }^{2} \mathrm{C}: 1 \mathrm{ch}\right)$	88			
	μ PD780058Y	24 K to 60 K	2 ch	2 ch						3 ch (time-division UART: $1 \mathrm{ch}, 1^{2} \mathrm{C}: 1 \mathrm{ch}$)	68	1.8 V		
	$\mu \mathrm{PD} 78058 \mathrm{FY}$	48 K to 60 K								3 ch (UART: $\left.1 \mathrm{ch}, \mathrm{I}^{2} \mathrm{C}: 1 \mathrm{ch}\right)$	69	2.7 V		
	μ PD78054Y	16 K to 60 K										2.0 V		
	$\mu \mathrm{PD} 780078 \mathrm{Y}$	48 K to 60 K		2 ch	-			8 ch	-	4 ch (UART: $\left.2 \mathrm{ch}, \mathrm{I}^{2} \mathrm{C}: 1 \mathrm{ch}\right)$	52	1.8 V		
	$\mu \mathrm{PD} 780034 \mathrm{AY}$	8 K to 32 K		1 ch						3 ch (UART: $\left.1 \mathrm{ch}, \mathrm{I}^{2} \mathrm{C}: 1 \mathrm{ch}\right)$	51			
	$\mu \mathrm{PD} 780024 \mathrm{AY}$				8 ch			-						
	$\mu \mathrm{PD} 78018 \mathrm{FY}$	8 K to 60 K								$2 \mathrm{ch}\left({ }^{2} \mathrm{C}: 1 \mathrm{ch}\right)$	53			
LCD drive	μ PD780354Y	24 K to 32 K	4 ch	1 ch	1 ch	1 ch	-	8 ch	-	4 ch (UART: 1 ch , $I^{2} \mathrm{C}$: 1 ch)	66	1.8 V	-	
	μ PD780344Y						8 ch	-						
	μ PD780308Y	48 K to 60 K	2 ch							3 ch (time-divion UART: $1 \mathrm{ch},{ }^{1} \mathrm{C}$: 1 ch)	57	2.0 V		
	μ PD78064Y	16 K to 32 K								2 ch (UART: $\left.1 \mathrm{ch}, \mathrm{I}^{2} \mathrm{C}: 1 \mathrm{ch}\right)$				
Bus interface supported	μ PD780701Y	60 K	3 ch	2 ch	1 ch	1 ch	16 ch	-	-	4 ch (UART: $\left.1 \mathrm{ch}, \mathrm{I}^{2} \mathrm{C}: 1 \mathrm{ch}\right)$	67	3.5 V	-	
	μ PD780703Y													
	μ PD780833 ${ }^{\text {r }}$										65	4.5 V		

Remark Functions other than the serial interface are common to both the Y and non- Y subseries.

OVERVIEW OF FUNCTIONS

Part Number Item			$\begin{gathered} \mu \text { PD78F0034B } \\ \mu \text { PD78F0034B(A) } \end{gathered}$	μ PD78F0034BY μ PD78F0034BY(A)
Internal memory	Flash memory		32 KB Note 1	
	High-speed RAM		1,024 bytes ${ }^{\text {Note }} 1$	
Memory space			64 KB	
General-purpose registers			8 bits $\times 32$ registers (8 bits $\times 8$ registers $\times 4$ banks)	
Minimum instruction execution time			On-chip minimum instruction execution time cycle variable function	
	When main system		$0.166 \mu \mathrm{~s} / 0.333 \mu \mathrm{~s} / 0.666 \mu \mathrm{~s} / 1.33 \mu \mathrm{~s} / 2.66 \mu \mathrm{~s}$ (@ 12 MHz operation, $\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V)	$0.238 \mu \mathrm{~s} / 0.48 \mu \mathrm{~s} / 0.95 \mu \mathrm{~s} / 1.91 \mu \mathrm{~s} / 3.81 \mu \mathrm{~s}$ (@ 8.38 MHz operation, Vdo $=4.0$ to 5.5 V)
	When subsystem clock selected		$122 \mu \mathrm{~s}$ (@ 32.768 kHz operation)	
Instruction set			- 16-bit operation - Multiply/divide (8 bits $\times 8$ bits, 16 bits $\div 8$ bits) - Bit manipulation (set, reset, test, Boolean operation) - BCD adjust, etc.	
I/O ports			Total: 51 - CMOS input: 8 - CMOS I/O: 39 - N-ch open-drain I/O (5 V withstand voltage): 4	
A/D converter			-10-bit resolution $\times 8$ channels - Operable over a wide power supply voltage range: $\mathrm{AVDD}=1.8$ to 5.5 V	
Serial interface			- UART mode: 1 channel - 3-wire serial I/O mode: 2 channels	- UART mode: 1 channel - 3-wire serial I/O mode: 1 channel - ${ }^{2} \mathrm{C}$ bus mode (multimaster supporting): 1 channel
Timers			- 16-bit timer/event counter: 1 channel - 8 -bit timer/event counter: 2 channels - Watch timer: 1 channel - Watchdog timer:	
Timer outputs			3 (8-bit PWM output capable: 2)	
Clock output			$\begin{aligned} & \text { • } 93.75 \mathrm{kHz}, 187.5 \mathrm{kHz}, 375 \mathrm{kHz}, 750 \mathrm{kHz} \text {, } \\ & 1.25 \mathrm{MHz}, 3 \mathrm{MHz}, 6 \mathrm{MHz}, 12 \mathrm{MHz} \\ & \text { (@ } 12 \mathrm{MHz} \text { operation with main system } \\ & \text { clock) } \\ & \text { • } 32.768 \mathrm{kHz} \text { (@ } 32.768 \mathrm{kHz} \text { operation with } \\ & \text { subsystem clock) } \end{aligned}$	$\begin{aligned} & \text { • } 65.5 \mathrm{kHz}, 131 \mathrm{kHz}, 262 \mathrm{kHz}, 524 \mathrm{kHz}, 1.05 \\ & \mathrm{MHz}, 2.10 \mathrm{MHz}, 4.19 \mathrm{MHz}, 8.38 \mathrm{MHz} \\ & \text { (@ } 8.38 \mathrm{MHz} \text { operation with main system } \\ & \text { clock) } \\ & \text { - } 32.768 \mathrm{kHz} \text { (@ } 32.768 \mathrm{kHz} \text { operation with } \\ & \text { subsystem clock) } \end{aligned}$
Buzzer output			$1.46 \mathrm{kHz}, 2.93 \mathrm{kHz}, 5.86 \mathrm{kHz}, 11.7 \mathrm{kHz}$ (@12 MHz operation with main system clock)	$1.02 \mathrm{kHz}, 2.05 \mathrm{kHz}, 4.10 \mathrm{kHz}, 8.19 \mathrm{kHz}$ (@ 8.38 MHz operation with main system clock)
Vectored interrupt sources		Maskable	Internal: 13, external: 5	
		Non-maskable	Internal: 1	
		Software	1	
Test inputs			Internal: 1, external: 1	
Supply voltage			$\mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V	
Operating ambient temperature			$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$	
Package			-64-pin plastic LQFP (10 x 10) -64-pin plastic LQFP (14 x 14) -64-pin plastic TQFP (12×12) - 73-pin plastic FBGA $(9 \times 9)^{\text {Note } 2}$	

Notes 1. The capacities of the flash memory and the internal high-speed RAM can be changed with the memory size switching register (IMS).
2. The special grade version of the 73 -pin plastic FBGA (9×9) is not provided.

CONTENTS

1. PIN CONFIGURATION (TOP VIEW) 9
2. BLOCK DIAGRAM 12
3. PIN FUNCTIONS 13
3.1 Port Pins 13
3.2 Non-Port Pins 14
3.3 Pin I/O Circuits and Recommended Connection of Unused Pins 16
4. DIFFERENCES BETWEEN μ PD78F0034B, 78F0034BY, AND MASK ROM VERSIONS 19
5. DIFFERENCES BETWEEN μ PD78F0034B, 78F0034BY AND μ PD78F0034A, 78F0034AY 21
6. DIFFERENCES BETWEEN μ PD78F0034B, 78F0034BY AND μ PD78F0034B(A), 78F0034BY(A) 22
7. MEMORY SIZE SWITCHING REGISTER (IMS) 23
8. FLASH MEMORY PROGRAMMING 24
8.1 Selection of Communication Mode 24
8.2 Flash Memory Programming Functions 26
8.3 Connection of Flashpro III/Flashpro IV 26
9. ELECTRICAL SPECIFICATIONS 28
$9.1 \mu \mathrm{PD} 78 \mathrm{~F} 0034 \mathrm{~B}, 78 \mathrm{F0034B}(\mathrm{~A})$ 28
$9.2 \mu \mathrm{PD} 78 \mathrm{~F} 0034 \mathrm{BY}, 78 \mathrm{~F} 0034 \mathrm{BY}(\mathrm{A})$ 46
9.3 Timing Chart 64
10. PACKAGE DRAWINGS 71
11. RECOMMENDED SOLDERING CONDITIONS 75
APPENDIX A. DEVELOPMENT TOOLS 77
APPENDIX B. RELATED DOCUMENTS 85

1. PIN CONFIGURATION (TOP VIEW)

- 64-pin plastic LQFP (10 x 10)
- 64-pin plastic TQFP (12 x 12)
- 64-pin plastic LQFP (14 x 14)

Notes 1. SDA0 and SCL0 are incorporated only in the μ PD78F0034BY, 78F0034BY(A) Subseries.
2. SI31, SO31, and $\overline{\text { SCK31 }}$ are incorporated only in the μ PD78F0034B, 78F0034B(A) Subseries.

Cautions 1. Connect the Vpp pin directly to Vsso or Vss1 in normal operation mode.

2. Connect the AVss pin to Vsso.

Remark When the μ PD78F0034B, 78F0034BY, $78 \mathrm{~F} 0034 \mathrm{~B}(\mathrm{~A})$, and $78 \mathrm{~F} 0034 \mathrm{BY}(\mathrm{A})$ are used in application fields that require reduction of the noise generated from inside the microcontroller, the implementation of noise reduction measures, such as supplying voltage to VdDo and Vodi individually and connecting Vsso and Vss1 to different ground lines, is recommended.

- 73-pin plastic FBGA (9 x 9)

Pin No.	Pin Name								
A1	NC	C1	P52/A10	E1	P57/A15	G1	P33/SCL0 ${ }^{\text {Note }} 1$	J1	NC
A2	P46/AD6	C2	P53/A11	E2	VDDO	G2	P32/SDA0 ${ }^{\text {Note }} 1$	J2	P36/ $\overline{\text { SCK31 }}^{\text {Note } 2}$
A3	P44/AD4	C3	P45/AD5	E3	P54/A12	G3	P20/SI30	J3	NC
A4	P41/AD1	C4	P42/AD2	E4	-	G4	P21/SO30	J4	P25/ASCK0
A5	P67/ASTB	C5	P64/RD	E5	-	G5	P24/TxD0	J5	NC
A6	P65/WR	C6	P73/TI51/TO51	E6	-	G6	VDD1	J6	P17/ANI7
A7	P74/PCL	C7	P03/INTP3/ADTRG	E7	P00/INTP0	G7	P16/ANI6	J7	P12/ANI2
A8	NC	C8	P01/INTP1	E8	XT1	G8	AV ${ }_{\text {dD }}$	J8	P13/ANI3
A9	NC	C9	Vss1	E9	X2	G9	NC	J9	NC
B1	P51/A9	D1	P55/A13	F1	P30	H1	P34/SI31 ${ }^{\text {Note } 2}$		
B2	P47/AD7	D2	P56/A14	F2	P31	H2	P35/SO31 ${ }^{\text {Note } 2}$		
B3	P43/AD3	D3	P50/A8	F3	Vsso	H3	P23/RxD0		
B4	P40/AD0	D4	NC	F4	-	H4	P22/ $\overline{\text { SCK30 }}$		
B5	P66/WAIT	D5	-	F5	-	H5	AVss		
B6	P75/BUZ	D6	-	F6	-	H6	P15/ANI5		
B7	P72/TI50/TO51	D7	P02/INTP2	F7	P14/ANI4	H7	P11/ANI1		
B8	P71/TI01	D8	VPP	F8	$\overline{\text { RESET }}$	H8	P10/ANI0		
B9	P70/TI00/TO0	D9	X1	F9	XT2	H9	AVref		

Notes 1. SDA0 and SCL0 are incorporated only in the μ PD78F0034BY Subseries.
2. SI31, SO31, and SCK31 are incorporated only in the μ PD78F0034B Subseries.

Cautions 1. Connect the Vpp pin directly to Vsso or Vss1 in normal operation mode.
2. Connect the AVss pin to Vsso.

Remarks 1. When the $\mu \mathrm{PD} 78 \mathrm{~F} 0034 \mathrm{~B}, 78 \mathrm{~F} 0034 \mathrm{BY}, 78 \mathrm{~F} 0034 \mathrm{~B}(\mathrm{~A})$, and $78 \mathrm{~F} 0034 \mathrm{BY}(\mathrm{A})$ are used in application fields that require reduction of the noise generated from inside the microcontroller, the implementation of noise reduction measures, such as supplying voltage to VDDo $_{\text {and }}$ VDD1 $^{\text {individually }}$ and connecting Vsso and Vss1 to different ground lines, is recommended.
2. The special grade version of the 73-pin plastic FBGA (9×9) is not provided.

A8 to A15:	Address bus	P70 to P75:	Port 7
AD0 to AD7:	Address/data bus	PCL:	Programmable clock
ADTRG:	AD trigger input	$\overline{\mathrm{RD}}$:	Read strobe
ANIO to ANI7:	Analog input	RESET:	Reset
ASCKO:	Asynchronous serial clock	RxD0:	Receive data
ASTB:	Address strobe	SCK30, $\overline{\text { SCK31, }}$, SCL0:	Serial clock
AVdD:	Analog power supply	SDA0:	Serial data
AVref:	Analog reference voltage	SI30, SI31:	Serial input
AVss:	Analog ground	SO30, SO31:	Serial output
BUZ:	Buzzer clock	TI00, TI01, TI50, TI51:	Timer input
INTP0 to INTP3:	External interrupt input	TO0, TO50, TO51:	Timer output
NC:	No connection	TxD0:	Transmit data
P00 to P03:	Port 0	Vddo, VdD1:	Power supply
P10 to P17:	Port 1	Vpp:	Programming power supply
P20 to P25:	Port 2	Vsso, Vssi:	Ground
P30 to P36:	Port 3	WAIT:	Wait
P40 to P47:	Port 4	WR:	Write strobe
P50 to P57:	Port 5	X1, X2:	Crystal (main system clock)
P64 to P67:	Port 6	XT1, XT2:	Crystal (subsystem clock)

2. BLOCK DIAGRAM

Notes 1. Incorporated only in the $\mu \mathrm{PD} 78 \mathrm{~F} 0034 \mathrm{~B}$ and $78 \mathrm{~F} 0034 \mathrm{~B}(\mathrm{~A})$
2. Incorporated only in the $\mu \mathrm{PD} 78 \mathrm{~F} 0034 \mathrm{BY}$ and $78 \mathrm{~F} 0034 \mathrm{BY}(\mathrm{A})$

3. PIN FUNCTIONS

3.1 Port Pins (1/2)

Pin Name	I/O		Function	After Reset	Alternate Function	
P00	I/O	Port 0 4-bit I/O port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be specified by software.		Input	INTP0	
P01				INTP1		
P02				INTP2		
P03				INTP3/ADTRG		
P10 to P17	Input	Port 1 8-bit input-only port.			Input	ANIO to ANI7
P20	I/O	Port 2 6-bit I/O port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be specified by software.			Input	SI30
P21				SO30		
P22				$\overline{\text { SCK30 }}$		
P23				RxD0		
P24				TxD0		
P25				ASCK0		
P30	I/O	Port 3 7-bit I/O port. Input/output can be specified in 1-bit units.	N-ch open-drain I/O port. LEDs can be driven directly.		Input	-
P31						
P32				SDA0 Note 1		
P33				SCLO ${ }^{\text {Note } 1}$		
P34			An on-chip pull-up resistor can be specified by software.	SI31 Note 2		
P35				SO31 Note 2		
P36				$\overline{\text { SCK31 }}$ Note 2		
P40 to P47	I/O	Port 4 8-bit I/O port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be specified by software. Interrupt request flag KRIF is set to 1 by falling edge detection.		Input	AD0 to AD7	
P50 to P57	I/O	Port 5 8-bit I/O port. LEDs can be driven directly. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be specified by software.		Input	A8 to A15	
P64	I/O	Port 6 4-bit I/O port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be specified by software.		Input	$\overline{\mathrm{RD}}$	
P65				$\overline{\mathrm{WR}}$		
P66				$\overline{\text { WAIT }}$		
P67				ASTB		

Notes 1. SDA0 and SCL0 are incorporated only in the μ PD78F0034BY and 78F0034BY(A).
2. SI31, SO31, and SCK31 are incorporated only in the μ PD78F0034B and 78F0034B(A).

3.1 Port Pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
P70	I/O	Port 7 6-bit I/O port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be specified by software.	Input	TI00/TOO
P71				TI01
P72				TI50/TO50
P73				TI51/TO51
P74				PCL
P75				BUZ

3.2 Non-Port Pins (1/2)

Pin Name	I/O	Function	After Reset	Alternate Function
INTPO	Input	External interrupt request input by which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified.	Input	P00
INTP1				P01
INTP2				P02
INTP3				P03/ADTRG
SI30	Input	Serial interface serial data input.	Input	P20
SI31 Note 1				P34
SDA0 Note 2	I/O	Serial interface serial data input/output	Input	P32
SO30	Output	Serial interface serial data output.	Input	P21
SO31 Note 1				P35
$\overline{\text { SCK30 }}$	I/O	Serial interface serial clock input/output.	Input	P22
$\overline{\text { SCK31 }}^{\text {Note } 1}$				P36
SCL0 ${ }^{\text {Note } 2}$				P33
RxD0	Input	Serial data input for asynchronous serial interface.	Input	P23
TxD0	Output	Serial data output for asynchronous serial interface.	Input	P24
ASCK0	Input	Serial clock input for asynchronous serial interface.	Input	P25
TIOO	Input	External count clock input to 16 -bit timer/event counter 0. Capture trigger signal input to capture register 01 (CR01) of 16-bit timer/ event counter 0 .	Input	P70/TO0
TI01		Capture trigger signal input to capture register 00 (CROO) of 16-bit timer/ event counter 0.		P71
TI50		External count clock input to 8-bit timer/event counter 50.		P72/TO50
TI51		External count clock input to 8-bit timer/event counter 51.		P73/TO51
TO0	Output	16-bit timer/event counter 0 output.	Input	P70/TI00
TO50		8-bit timer/event counter 50 output (shared with 8-bit PWM output).	Input	P72/TI50
TO51		8-bit timer/event counter 51 output (shared with 8-bit PWM output).		P73/TI51
PCL	Output	Clock output (for trimming of main system clock and subsystem clock).	Input	P74
BUZ	Output	Buzzer output.	Input	P75
AD0 to AD7	I/O	Lower address/data bus for extending memory externally.	Input	P40 to P47

Notes 1. SI31, SO31, and $\overline{\text { SCK31 }}$ are incorporated only in the $\mu \mathrm{PD} 78 \mathrm{~F} 0034 \mathrm{~B}$ and 78F0034B(A).
2. SDA0 and SCL0 are incorporated only in the μ PD78F0034BY and 78F0034BY(A).

3.2 Non-Port Pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
A8 to A15	Output	Higher address bus for extending memory externally.	Input	P50 to P57
$\overline{\mathrm{RD}}$	Output	Strobe signal output for read operation of external memory.	Input	P64
$\overline{W R}$		Strobe signal output for write operation of external memory.		P65
$\overline{\text { WAIT }}$	Input	Inserting wait for accessing external memory.	Input	P66
ASTB	Output	Strobe output which externally latches address information output to ports 4 and 5 to access external memory.	Input	P67
ANIO to ANI7	Input	A/D converter analog input.	Input	P10 to P17
ADTRG	Input	A/D converter trigger signal input.	Input	P03/INTP3
AVref	Input	A/D converter reference voltage input.	-	-
AV ${ }_{\text {dD }}$	-	A/D converter analog power supply. Set the voltage equal to Vddo or Vodi.	-	-
AV ss	-	A/D converter ground potential. Set the voltage equal to V sso or V ss1.	-	-
RESET	Input	System reset input.	-	-
X1	Input	Connecting crystal resonator for main system clock oscillation.	-	-
X2	-		-	-
XT1	Input	Connecting crystal resonator for subsystem clock oscillation.	-	-
XT2	-		-	-
Vodo	-	Positive power supply voltage for ports.	-	-
Vsso	-	Ground potential of ports.	-	-
VDD1	-	Positive power supply (except ports).	-	-
Vss1	-	Ground potential (except ports).	-	-
Vpp	-	Applying high-voltage for program write/verify. Connect to Vsso or Vss1 in normal operation mode.	-	-
NC ${ }^{\text {Note }}$	-	Not internally connected. Leave open.	-	-

Note NC is incorporated only in the 73-pin plastic FBGA.

3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 3-1. For the input/output configuration of each type, refer to Figure 3-1.

Table 3-1. Types of Pin I/O Circuits (1/2)

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00/INTP0	8-C	I/O	Input: Independently connect to Vsso or Vssi via a via a resistor. Output: Leave open.
P01/INTP1			
P02/INTP2			
P03/INTP3/ADTRG			
P10/ANI0 to P17/ANI7	25	Input	Directly connect to Vddo, Vdd1, Vsso, or Vssi.
P20/SI30	8-C	I/O	Input: Independently connect to VDD0, VDD1, Vsso, or Vss1 via a resistor. Output: Leave open.
P21/SO30	$5-\mathrm{H}$		
P22/SCK30	8-C		
P23/RxD0			
P24/TxD0	$5-\mathrm{H}$		
P25/ASCK0	8-C		
P30, P31	13-P		Input: Directly connect to Vsso or Vss1.
P32/SDA0 ${ }^{\text {Note } 1}$	13-R		Output: Leave open at low-level output.
P33/SCL0 ${ }^{\text {Note } 1}$			
P34/SI31 Note 2	8-C		Input: Independently connect to Vddo, VdD1, Vsso or Vssi via a resistor. Output: Leave open.
P35/SO31 Note 2	$5-\mathrm{H}$		
P36/SCK31 ${ }^{\text {Note }} 2$	8-C		
P40/AD0 to P47/AD7	5-H		Input: Independently connect to Vddo or Vdd1 via a resistor. Output: Leave open.
P50/A8 to P57/A15	5-H		Input: Independently connect to Vddo, Vdd1, Vsso, or Vss1 via a resistor. Output: Leave open.
P64/RD			
P65/WR			
P66/WAIT			
P67/ASTB			
P70/TI00/TO0	8-C		
P71/TI01			
P72/TI50/TO50			
P73/TI51/TO51			
P74/PCL	5-H		
P75/BUZ			

Notes 1. SDA0 and SCL0 are incorporated only in the $\mu \mathrm{PD} 78 \mathrm{~F} 0034 \mathrm{BY}$ and 78F0034BY(A).
2. SI31, SO31, and SCK31 are incorporated only in the μ PD78F0034B and 78F0034B(A).

Table 3-1. Types of Pin I/O Circuits (2/2)

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
RESET	2	Input	-
XT1	16		Directly connect to Vddo or Vod1.
XT2		-	Leave open.
AVDD	-		Directly connect to Vddo or Vod1.
AVref			Directly connect to V sso or V ss1.
AVss			
Vpp			Connect to Vsso or Vssi.

Figure 3-1. Pin I/O Circuits

4. DIFFERENCES BETWEEN μ PD78F0034B, 78F0034BY, AND MASK ROM VERSIONS

The μ PD78F0034B and 78F0034BY are products provided with a flash memory which enables writing, erasing, and rewriting of programs with device mounted on the target system.

The functions of the μ PD78F0034B and 78F0034BY (except the functions specified for flash memory) can be made the same as those of the mask ROM versions by setting the memory size switching register (IMS).

Tables 4-1 and 4-2 show the differences between the μ PD78F0034B, 78F0034BY and the mask ROM versions.

Table 4-1. Differences Between μ PD78F0034B and Mask ROM Versions

Item	μ PD78F0034B	Mask ROM Versions	
		μ PD780034A Subseries	μ PD780024A Subseries ${ }^{\text {Note }}$
Internal ROM structure	Flash memory	Mask ROM	
Internal ROM capacity	32 KB	μ PD780031A: 8 KB μ PD780032A: 16 KB μ PD780033A: 24 KB μ PD780034A: 32 KB	μ PD780021A: 8 KB μ PD780022A: 16 KB μ PD780023A: 24 KB μ PD780024A: 32 KB
Internal high-speed RAM capacity	1,024 bytes	μ PD780031A: 512 bytes μ PD780032A: 512 bytes μ PD780033A: 1,024 bytes μ PD780034A: 1,024 bytes	μ PD780021A: 512 bytes μ PD780022A: 512 bytes μ PD780023A: 1,024 bytes μ PD780024A: 1,024 bytes
Minimum instruction execution time	Minimum instruction execution time variable function incorporated		
When main system clock is selected	$<\mu$ PD78F0034B and expanded-specification products of the mask ROM versions> $0.166 \mu \mathrm{~s} / 0.333 \mu \mathrm{~s} / 0.666 \mu \mathrm{~s} / 1.33 \mu \mathrm{~s} / 2.66 \mu \mathrm{~s}$ (@ 12 MHz operation, $\mathrm{VDD}=4.5$ to 5.5 V) <Conventional products of the mask ROM versions> $0.238 \mu \mathrm{~s} / 0.48 \mu \mathrm{~s} / 0.95 \mu \mathrm{~s} / 1.91 \mu \mathrm{~s} / 3.81 \mu \mathrm{~s}$ (@ 8.38 MHz operation, $\mathrm{V}_{\mathrm{DD}}=4.0$ to 5.5 V)		
When subsystem clock is selected	$122 \mu \mathrm{~s}(32.768 \mathrm{kHz})$		
Clock output	$<\mu$ PD78F0034B and expanded-specification products of the mask ROM versions> - 93.75 kHz , $187.5 \mathrm{kHz}, 375 \mathrm{kHz}, 750 \mathrm{kHz}, 1.25 \mathrm{MHz}, 3 \mathrm{MHz}, 6 \mathrm{MHz}, 12 \mathrm{MHz}$ (@ 12 MHz operation with main system clock) - 32.768 kHz (@ 32.768 kHz operation with subsystem clock) <Conventional products of the mask ROM versions> - $65.5 \mathrm{kHz}, 131 \mathrm{kHz}, 262 \mathrm{kHz}, 524 \mathrm{kHz}, 1.05 \mathrm{MHz}, 2.10 \mathrm{MHz}, 4.19 \mathrm{MHz}, 8.38 \mathrm{MHz}$ (@ 8.38 MHz operation with main system clock) - 32.768 kHz (@ 32.768 kHz operation with subsystem clock)		
Buzzer output	$<\mu$ PD78F0034B and expanded-specification products of the mask ROM versions> $1.46 \mathrm{kHz}, 2.93 \mathrm{kHz}, 5.86 \mathrm{kHz}, 11.7 \mathrm{kHz}$ (@ 12 MHz operation with main system clock) <Conventional products of the mask ROM versions> - $1.02 \mathrm{kHz}, 2.05 \mathrm{kHz}, 4.10 \mathrm{kHz}, 8.19 \mathrm{kHz}$ (@ 8.38 MHz operation with main system clock)		
A/D converter resolution	10 bits		8 bits
Mask option specification of on-chip pull-up resistor for pins P30 to P33	Not available	Available	
IC pin	Not provided	Provided	
Vpp pin	Provided	Not provided	
Electrical specifications, recommended soldering conditions	Refer to the data sheet of individual products.		

Note The μ PD78F0034B can be used as the flash memory version of the μ PD780024A Subseries.

Caution There are differences in noise immunity and noise radiation between the flash memory and mask ROM versions. When pre-producing an application set with the flash memory version and then mass producing it with the mask ROM version, be sure to conduct sufficient evaluations on the commercial samples (CS) (not engineering samples (ES)) of the mask ROM versions.

Table 4-2. Differences Between μ PD78F0034BY and Mask ROM Versions

Item	$\mu \mathrm{PD} 78 \mathrm{~F} 0034 \mathrm{BY}$	Mask ROM Versions	
		μ PD780034AY Subseries	μ PD780024AY Subseries ${ }^{\text {Note }}$
Internal ROM structure	Flash memory	Mask ROM	
Internal ROM capacity	32 KB	μ PD780031AY: 8 KB μ PD780032AY: 16 KB μ PD780033AY: 24 KB μ PD780034AY: 32 KB	μ PD780021AY: 8 KB μ PD780022AY: 16 KB μ PD780023AY: 24 KB μ PD780024AY: 32 KB
Internal high-speed RAM capacity	1,024 bytes	μ PD780031AY: 512 bytes μ PD780032AY: 512 bytes μ PD780033AY: 1,024 bytes μ PD780034AY: 1,024 bytes	μ PD780021AY: 512 bytes μ PD780022AY: 512 bytes μ PD780023AY: 1,024 bytes μ PD780024AY: 1,024 bytes
Minimum instruction execution time	Minimum instruction execution time variable function incorporated		
When main system clock is selected	$0.238 \mu \mathrm{~s} / 0.48 \mu \mathrm{~s} / 0.95 \mu \mathrm{~s} / 1.91 \mu \mathrm{~s} / 3.81 \mu \mathrm{~s}$ (operation at $8.38 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=4.0$ to 5.5 V)		
When subsystem clock is selected	$122 \mu \mathrm{~s}(32.768 \mathrm{kHz})$		
Clock output	- $65.5 \mathrm{kHz}, 131 \mathrm{kHz}, 262 \mathrm{kHz}, 524 \mathrm{kHz}, 1.05 \mathrm{MHz}, 2.10 \mathrm{MHz}, 4.19 \mathrm{MHz}, 8.38 \mathrm{MHz}$ (@ 8.38 MHz operation with main system clock) - 32.768 kHz (@ 32.768 kHz operation with subsystem clock)		
Buzzer output	$1.02 \mathrm{kHz}, 2.05 \mathrm{kHz}, 4.10 \mathrm{kHz}, 8.19 \mathrm{kHz}$ (@ 8.38 MHz operation with main system clock)		
A/D converter resolution	10 bits		8 bits
Mask option specification of on-chip pull-up resistor for pins P30 and P31	Not available	Available	
IC pin	Not provided	Provided	
Vpp pin	Provided	Not provided	
Electrical specifications, recommended soldering conditions	Refer to the data sheet of individual products.		

Note The μ PD78F0034BY can be used as the flash memory version of the μ PD780024AY Subseries.

Caution There are differences in noise immunity and noise radiation between the flash memory and mask ROM versions. When pre-producing an application set with the flash memory version and then mass producing it with the mask ROM version, be sure to conduct sufficient evaluations on the commercial samples (CS) (not engineering samples (ES)) of the mask ROM versions.

5. DIFFERENCES BETWEEN μ PD78F0034B, 78F0034BY AND μ PD78F0034A, 78F0034AY

Table $5-1$ shows the differences between the $\mu \mathrm{PD} 78 \mathrm{~F} 0034 \mathrm{~B}$ and $\mu \mathrm{PD} 78 \mathrm{~F} 0034 \mathrm{~A}$, and Table $5-2$ shows differences between the μ PD78F0034BY and 78F0034AY.

Table 5-1. Differences Between μ PD78F0034B and μ PD78F0034A

Item		μ PD78F0034B	μ PD78F0034A
Guaranteed operating speed (operating frequency)	4.5 to 5.5 V	$12 \mathrm{MHz}(0.166 \mu \mathrm{~s})$	8.38 MHz (0.238 $\mu \mathrm{s}$)
	4.0 to 5.5 V	8.38 MHz (0.238 $\mu \mathrm{s}$)	8.38 MHz (0.238 $\mu \mathrm{s}$)
	3.0 to 5.5 V	8.38 MHz (0.238 $\mu \mathrm{s}$)	$5 \mathrm{MHz}(0.4 \mu \mathrm{~s})$
	2.7 to 5.5 V	$5 \mathrm{MHz}(0.4 \mu \mathrm{~s})$	$5 \mathrm{MHz}(0.4 \mu \mathrm{~s})$
	1.8 to 5.5 V	1.25 MHz (1.6 $\mu \mathrm{s}$)	$1.25 \mathrm{MHz}(1.6 \mu \mathrm{~s})$
Maximum instruction execution time		Minimum instruction execution time variable function incorporated	
When main system clock is selected		$0.166 \mu \mathrm{~s} / 0.333 \mu \mathrm{~s} / 0.666 \mu \mathrm{~s} / 1.33 \mu \mathrm{~s} / 2.66 \mu \mathrm{~s}$ (@ 12 MHz operation, Vdd $=4.5$ to 5.5 V)	$0.238 \mu \mathrm{~s} / 0.48 \mu \mathrm{~s} / 0.95 \mu \mathrm{~s} / 1.91 \mu \mathrm{~s} / 3.81 \mu \mathrm{~s}$ (@ 8.38 MHz operation, V Do $=4.0$ to 5.5 V)
When subsystem clock is selected		$122 \mu \mathrm{~s}(32.768 \mathrm{kHz})$	
Clock output		- $93.75 \mathrm{kHz}, 187.5 \mathrm{kHz}, 375 \mathrm{kHz}, 750 \mathrm{kHz}$, $1.25 \mathrm{MHz}, 3 \mathrm{MHz}, 6 \mathrm{MHz}, 12 \mathrm{MHz}$ (@ 12 MHz operation with main system clock) - 32.768 kHz (@ 32.768 kHz operation with subsystem clock)	- $65.5 \mathrm{kHz}, 131 \mathrm{kHz}, 262 \mathrm{kHz}, 524 \mathrm{kHz}$, $1.05 \mathrm{MHz}, 2.10 \mathrm{MHz}, 4.19 \mathrm{MHz}, 8.38$ MHz (@ 8.38 MHz operation with main system clock) - 32.768 kHz (@ 32.768 kHz operation with subsystem clock)
Buzzer output		$1.46 \mathrm{kHz}, 2.93 \mathrm{kHz}, 5.86 \mathrm{kHz}, 11.7 \mathrm{kHz}$ (@ 12 MHz operation with main system clock)	$1.02 \mathrm{kHz}, 2.05 \mathrm{kHz}, 4.10 \mathrm{kHz}, 8.19 \mathrm{kHz}$ (@ 8.38 MHz operation with main system clock)
Communication mode of flash memory programming		- 3-wire serial I/O: 2 channels $^{\text {Note }}$ - UART: 1 channel - Pseudo 3-wire serial I/O: 1 channel	- 3-wire serial I/O: 2 channels $^{\text {Note }}$ - UART: 1 channel - Pseudo 3-wire serial I/O: 1 channel
Electrical specifications, recommended soldering conditions		Refer to the data sheet of individual products.	

Note The μ PD78F0034B can use one channel (serial interface SIO30) as a handshake mode. The μ PD78F0034A cannot use a handshake mode.

Remark The operating frequency ratings of the μ PD78F0034B and the expanded-specification products of the mask ROM versions of the μ PD780024A, 780034A Subseries are the same. The operating frequency ratings of the μ PD78F0034A and the conventional products of the mask ROM versions of the μ PD780024A, 780034A Subseries are the same.

Table 5-2. Differences Between μ PD78F0034BY and μ PD78F0034AY

Item		μ PD78F0034BY	μ PD78F0034AY
Guaranteed operating speed (operating frequency)	4.5 to 5.5 V	$8.38 \mathrm{MHz}(0.238 \mu \mathrm{~s})$	
	4.0 to 5.5 V	$8.38 \mathrm{MHz}(0.238 \mu \mathrm{~s})$	
	3.0 to 5.5 V	$5 \mathrm{MHz}(0.4 \mu \mathrm{~s})$	
	2.7 to 5.5 V	$5 \mathrm{MHz}(0.4 \mu \mathrm{~s})$	
	1.8 to 5.5 V	$1.25 \mathrm{MHz}(1.6 \mu \mathrm{~s})$	
Maximum instruction execution time		Minimum instruction execution time variable function incorporated	
When main system clock is selected		$0.238 \mu \mathrm{~s} / 0.48 \mu \mathrm{~s} / 0.95 \mu \mathrm{~s} / 1.91 \mu \mathrm{~s} / 3.81 \mu \mathrm{~s}$ (@ 8.38 MHz operation, $\mathrm{V}_{\mathrm{DD}}=$ 4.0 to 5.5 V)	
When subsystem clock is selected		$122 \mu \mathrm{~s}$ (32.768 kHz)	
Clock output		- $65.5 \mathrm{kHz}, 131 \mathrm{kHz}, 262 \mathrm{kHz}, 524 \mathrm{kHz}, 1.05 \mathrm{MHz}, 2.10 \mathrm{MHz}, 4.19 \mathrm{MHz}$, 8.38 MHz (@ 8.38 MHz operation with main system clock) - 32.768 kHz (@ 32.768 kHz operation with subsystem clock)	
Buzzer output		$1.02 \mathrm{kHz}, 2.05 \mathrm{kHz}, 4.10 \mathrm{kHz}, 8.19 \mathrm{kHz}$ (@ 8.38 MHz operation with main system clock)	
Communication mode of flash memory programming		- 3 -wire serial I/O: $\quad 2$ channels ${ }^{\text {Note }}$ - UART: - Pseudo 3 -wire serial I/O: 1 channel channel	- 3-wire serial I/O: $\quad 2$ channels ${ }^{\text {Note }}$ - UART: - Pseudo 3 -wire serial I/O: 1 channel channel
Electrical specifications, recommended soldering conditions		Refer to the data sheet of individual products.	

Note The μ PD78F0034BY can use one channel (serial interface SIO30) as a handshake mode. The μ PD78F0034AY cannot use a handshake mode.

Remark The operating frequency ratings of the μ PD78F0034BY, 78F0034AY and the mask ROM versions of the μ PD780024AY, 780034AY Subseries are the same.

6. DIFFERENCES BETWEEN μ PD78F0034B, 78F0034BY AND μ PD78F0034B(A), 78F0034BY(A)

The $\mu \mathrm{PD} 78 \mathrm{~F} 0034(\mathrm{~A})$ and $78 \mathrm{~F} 0034 \mathrm{BY}(\mathrm{A})$ are products to which a quality assurance program more stringent than that used for the μ PD780034B and 780034BY (standard models) is applied (NEC Electronics classifies these products as "special" quality grade models).

The $\mu \mathrm{PD} 78 \mathrm{~F} 0034 \mathrm{~B}, 78 \mathrm{~F} 0034 \mathrm{BY}$ and $\mu \mathrm{PD} 78 \mathrm{~F} 0034 \mathrm{~B}(\mathrm{~A}), 78 \mathrm{~F} 0034 \mathrm{BY}(\mathrm{A})$ only differ in the quality grade; there are no differences in functions and electrical specifications.

Table 6-1. Differences Between μ PD78F0034B, 78F0034BY and μ PD78F0034B(A), 78F0034BY(A)

Item	μ PD78F0034B, 78F0034BY	μ PD78F0034B(A), 78F0034BY(A)
Quality grade	Standard	Special
Functions and electrical specifications	No differences.	

7. MEMORY SIZE SWITCHING REGISTER (IMS)

IMS is a register that is set by software and is used to specify a part of the internal memory that is not to be used. By setting memory size switching register (IMS), the internal memory of the μ PD78F0034B, 78F0034BY, 78F0034B(A), and $78 \mathrm{~F} 0034 \mathrm{BY}(\mathrm{A})$ can be mapped identically to that of a mask ROM version.

IMS is set with an 8-bit memory manipulation instruction.
$\overline{\text { RESET input sets IMS to CFH. }}$

Caution The initial value of IMS is setting disabled (CFH). Be sure to set C 8 H or the value of the target mask ROM version at the moment of initial setting.

Figure 7-1. Format of Memory Size Switching Register

Table 7-1 shows the IMS set value to make the memory mapping the same as those of mask ROM versions.

Table 7-1. Set Value of Memory Size Switching Register

Target Mask ROM Versions	IMS Set Value
μ PD780021A, 780021AY, 780031A, 780031AY	42 H
$\mu \mathrm{PD} 780022 \mathrm{~A}, 780022 \mathrm{AY}, 780032 \mathrm{~A}, 780032 \mathrm{AY}$	44 H
$\mu \mathrm{PD} 780023 \mathrm{~A}, 780023 \mathrm{AY}, 780033 \mathrm{~A}, 780033 \mathrm{AY}$	C 6 H
$\mu \mathrm{PD} 780024 \mathrm{~A}, 780024 \mathrm{AY}, 780034 \mathrm{~A}, 780034 \mathrm{AY}$	C 8 H

8. FLASH MEMORY PROGRAMMING

Writing to flash memory can be performed without removing the memory from the target system (on board programming). Writing is performed with the dedicated flash programmer (Flashpro III (part No.: FL-PR3 and PGFP3)/(Flashpro IV (part No.: FL-PR4 and PG-FP4)) connected to the host machine and the target system.

Writing to flash memory can also be performed using flash memory writing adapter connected to Flashpro III/ Flashpro IV.

Remark FL-PR3 and FL-PR4 are products of Naito Densei Machida Mfg. Co., Ltd.

8.1 Selection of Communication Mode

Writing to a flash memory is performed using Flashpro III/Flashpro IV in a serial communication. Select one of the communication modes in Tables 8-1 and 8-2. The selection of the communication mode is made by using the format shown in Figure 8-1. Each communication mode is selected by the number of Vpp pulses shown in Tables 8-1 and 8-2.

Table 8-1. List of Communication Mode (μ PD78F0034B)

Communication Mode	Channels	Pin Used	VPP Pulses
3-wire serial I/O	2	SI30/P20 SO30/P21 SCK30/P22	(
		SI31/P34 SO31/P35 SCK31/P36	SI30/P20 SO30/P21
UART	SCK30/P22 HS/P25	3	
Pseudo 3-wire serial I/O	1	RxD0/P23 TxD0/P24	8

Caution Be sure to select a communication mode using the number of Vpp pulses shown in Table 8-1.

Table 8-2. List of Communication Mode (μ PD78F0034BY)

Communication Mode	Channels	Pin Used	VPP Pulses
3-wire serial I/O	1	SI30/P20 SO30/P21 SCK30/P22	SI30/P20 SO30/P21 SCK30/P22 HS/P25
I²C bus	1	SDA0/P32 SCL0/P33	3
UART	1	RxD0/P23 TxD0/P24	4
Pseudo 3-wire serial I/O	1	P72/TI50/TO50 (serial clock input) P71/TIO1 (serial data output) P70/TIO0/TO0 (serial data input)	8

Caution Be sure to select a communication mode using the number of Vpp pulses shown in Table 8-2.

Figure 8-1. Format of Communication Mode Selection

8.2 Flash Memory Programming Functions

Operations such as writing to flash memory are performed by various command/data transmission and reception operations according to the selected communication mode. Table $8-3$ shows major functions of flash memory programming.

Table 8-3. Major Functions of Flash Memory Programming

Function	Description
Reset	Used to stop write operation and detect transmission cycle.
Batch verify	Compares the entire memory contents with the input data.
Batch erase	Erases the entire memory contents.
Batch blank check	Checks the deletion status of the entire memory.
High-speed write	Performs write to the flash memory based on the write start address and the number of data to be written (number of bytes).
Continuous write	Performs continuous write based on the information input with high-speed write operation.
Status	Used to confirm the current operating mode and operation end.
Oscillation frequency setting	Sets the frequency of the resonator.
Erase time setting	Sets the memory erase time.
Baud rate setting	Sets the communication rate for UART mode
$I^{2} \mathrm{C}$ mode setting	Sets standard/high-speed mode for $\mathrm{I}^{2} \mathrm{C}$ bus mode
Silicon signature read	Outputs the device name and memory capacity, and device block information.

8.3 Connection of Flashpro III/Flashpro IV

The connection of Flashpro III/Flashpro IV and the μ PD78F0034B or 78F0034BY differs according to the communication mode (3-wire serial I/O, UART, pseudo 3 -wire serial I/O, and $I^{2} \mathrm{C}$ bus). The connection for each communication mode is shown in Figures 8-2 to 8-6, respectively.

Figure 6-2. Connection of Flashpro III/Flashpro IV in 3-Wire Serial I/O Mode

Flashpro III/Flashpro IV	μ PD78F0034B, μ PD78F0034BY
VPP	VPP
VDD	VDDo/VdD1/AVDD
$\overline{\text { RESET }}$	RESET
SCK	$\overline{\text { SCK3n }}$
So	SI 3 n
SI	SO3n
GND	

Remark μ PD78F0034B: $\quad \mathrm{n}=0,1$ μ PD78F0034BY: $\mathrm{n}=0$

Figure 8-3. Connection of Flashpro III in 3-Wire Serial I/O Mode (Using Handshake)

Figure 8-4. Connection of Flashpro III/Flashpro IV for UART Mode

Figure 8-5. Connection of Flashpro III/Flashpro IV for Pseudo 3-Wire Serial I/O Mode

Figure 8-6. Connection of Flashpro III/Flashpro IV for $I^{2} \mathrm{C}$ Bus Mode (μ PD78F0034BY only)

9. ELECTRICAL SPECIFICATIONS

9.1μ PD78F0034B, 78F0034B(A)

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Notes 1. 6.5 V or below
(Note 2 is explained on the following page.)

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Notes 2. Make sure that the following conditions of the VPP voltage application timing are satisfied when the flash memory is written.

- When supply voltage rises

Vpp must exceed Vdd 10μ s or more after Vdd has reached the lower-limit value (1.8 V) of the operating voltage range (see a in the figure below).

- When supply voltage drops

Vdd must be lowered 10μ s or more after Vpp falls below the lower-limit value (1.8 V) of the operating voltage range of $V_{D D}$ (see b in the figure below).

Capacitance ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{dD}}=\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input capacitance	Cin	$\mathrm{f}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V .				15	pF
I/O capacitance	$\mathrm{Cı}$	$f=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V .	P00 to P03, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75,			15	pF
			P30 to P33			20	pF

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

Main System Clock Oscillator Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=1.8$ to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	$\begin{array}{lll} \mathrm{VPP} & \mathrm{X} 2 & \mathrm{X} 1 \\ \hline \end{array}$	Oscillation frequency (fx) Note 1	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	1.0		12.0	MHz
			$3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	1.0		8.38	
			$1.8 \mathrm{~V} \leq \mathrm{V}$ D $<3.0 \mathrm{~V}$	1.0		5.0	
		Oscillation stabilization time ${ }^{\text {Note } 2}$	After Vod reaches oscillation voltage range MIN.			4	ms
Crystal resonator	VPP $\quad \mathrm{X} 2 \quad \mathrm{X} 1$	Oscillation frequency (fx) Note 1	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	1.0		12.0	MHz
			$3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	1.0		8.38	
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.0 \mathrm{~V}$	1.0		5.0	
		Oscillation stabilization time ${ }^{\text {Note } 2}$	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			10	ms
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			30	
External clock	$\mathrm{X} 2 \quad \mathrm{X} 1$	X1 input frequency (fx) ${ }^{\text {Note } 1}$	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	1.0		12.0	MHz
			$3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	1.0		8.38	
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.0 \mathrm{~V}$	1.0		5.0	
		X1 input high-/low-level width ($\mathrm{t} \times \mathrm{h}, \mathrm{tx}$)	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	38		500	ns
			$3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	50		500	
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.0 \mathrm{~V}$	85		500	

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
2. Time required to stabilize oscillation after reset or STOP mode release.

Cautions 1. When using the main system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss1.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

2. When the main system clock is stopped and the system is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

Remark For the resonator selection and oscillator constant, customers are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Subsystem Clock Oscillator Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator		Oscillation frequency (fxt) ${ }^{\text {Note } 1}$		32	32.768	35	kHz
		Oscillation stabilization time ${ }^{\text {Note } 2}$	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		1.2	2	s
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			10	
External clock	$\text { XT2 } \quad \text { XT1 }$	X1 input frequency (fxT) Note 1		32		38.5	kHz
		X1 input high-/low-level width (t тн, tx t)		12		15	$\mu \mathrm{s}$

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
2. Time required to stabilize oscillation after Vod reaches oscillator voltage MIN.

Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor to the same potential as Vss1.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

2. The subsystem clock oscillator is designed as a low-amplitude circuit for reducing power consumption, and is more prone to malfunction due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.

Remark For the resonator selection and oscillator constant, customers are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=1.8$ to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high	Іон	Per pin				-1	mA
		All pins				-15	mA
Output current, low	loL	Per pin for P00 to P03, P20 to P25, P34 to P36, P40 to P47, P64 to P67, P70 to P75				10	mA
		Per pin for P30 to P33, P50 to P57				15	mA
		Total for P00 to P03, P40 to P47, P64 to P67, P70 to P75				20	mA
		Total for P20 to P25				10	mA
		Total for P30 to P36				70	mA
		Total for P50 to P57				70	mA
Input voltage, high	V_{1+1}	$\begin{aligned} & \text { P10 to P17, P21, P24, P35, } \\ & \text { P40 to P47, P50 to P57, } \\ & \text { P64 to P67, P74, P75 } \end{aligned}$	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.7VdD		Vod	V
			$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	0.8Vdd		VdD	V
	V H^{2}	P00 to P03, P20, P22, P23, P25, P34, P36, P70 to P73, RESET	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.8 VDD		Vdo	V
			$1.8 \mathrm{~V} \leq \mathrm{VDD}^{2} 2.7 \mathrm{~V}$	0.85 VDD		VDD	V
	Vінз	P30 to P33 (N -ch open-drain)	$2.7 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	0.7 V do		5.5	V
			$1.8 \mathrm{~V} \leq \mathrm{VDD}^{2} 2.7 \mathrm{~V}$	0.8 VDD		5.5	V
	VIH4	X1, X2	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	VDD - 0.5		VdD	V
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	VDD -0.2		VDD	V
	V ${ }^{\text {H5 }}$	XT1, XT2	$4.0 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	0.8Vdd		Vdo	V
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	0.9VDD		VDD	V
Input voltage, low	VIL1	$\begin{aligned} & \text { P10 to P17, P21, P24, P35, } \\ & \text { P40 to P47, P50 to P57, } \\ & \text { P64 to P67, P74, P75 } \end{aligned}$	$2.7 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	0		0.3VDD	V
			$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	0		0.2Vdo	V
	VIL2	P00 to P03, P20, P22, P23, P25, P34, P36, P70 to P73, RESET	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0		0.2VDD	V
			$1.8 \mathrm{~V} \leq \mathrm{VDD}^{2} 2.7 \mathrm{~V}$	0		0.15 VDD	V
	VIL3	P30 to P33	$4.0 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	0		0.3 VDD	V
			$2.7 \mathrm{~V} \leq \mathrm{VDD}^{2} 4.0 \mathrm{~V}$	0		0.2 Vdo	V
			$1.8 \mathrm{~V} \leq \mathrm{VDD}^{2} 2.7 \mathrm{~V}$	0		$0.1 \mathrm{VDD}^{\text {d }}$	V
	VIL4	X1, X2	$2.7 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	0		0.4	V
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0		0.2	V
	VIL5	XT1, XT2	$4.0 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	0		0.2 VDD	V
			$1.8 \mathrm{~V} \leq \mathrm{VDD}^{2} 4.0 \mathrm{~V}$	0		$0.1 \mathrm{VDD}^{\text {d }}$	V
Output voltage, high	Vori	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{loH}=-1 \mathrm{~mA}$		VDD - 1.0		VDD	V
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$, $\mathrm{loH}=-100 \mu \mathrm{~A}$		VDD - 0.5		VDD	V
Output voltage, low	Vol1	P30 to P33	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL}=15 \mathrm{~mA} \end{aligned}$			2.0	V
		P50 to P57			0.4	2.0	V
		P00 to P03, P20 to P25, P34 to P36, P40 to P47, P64 to P67, P70 to P75	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL}=1.6 \mathrm{~mA} \end{aligned}$			0.4	V
	Vol2	lot $=400 \mu \mathrm{~A}$				0.5	V

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, $\mathrm{VDD}=1.8$ to 5.5 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$	P00 to P03, P10 to P17, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75, RESET			3	$\mu \mathrm{A}$
	ILIH2		X1, X2, XT1, XT2			20	$\mu \mathrm{A}$
	ІІІн3	V IN $=5.5 \mathrm{~V}$	P30 to P33			3	$\mu \mathrm{A}$
Input leakage current, low	ILIL1	$\mathrm{VIN}=0 \mathrm{~V}$	P00 to P03, P10 to P17, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75, RESET			-3	$\mu \mathrm{A}$
	ILil2		X1, X2, XT1, XT2			-20	$\mu \mathrm{A}$
	ILIL3		P30 to P33			-3	$\mu \mathrm{A}$
Output leakage current, high	ILOH	Vout $=$ VDD				3	$\mu \mathrm{A}$
Output leakage current, low	ILoL	Vout $=0 \mathrm{~V}$				-3	$\mu \mathrm{A}$
Software pullup resistor	R	$\begin{aligned} & \text { Vin = } 0 \text { V, } \\ & \text { P00 to P03, P20 to P25, P34 to P36, P40 to P47, } \\ & \text { P50 to P57, P64 to P67, P70 to P75 } \end{aligned}$		15	30	90	$\mathrm{k} \Omega$

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Power supply current ${ }^{\text {Note }} 1$	IdoiNote 2	$12.0 \mathrm{MHz}$ crystal oscillation operating mode	VDD $=5.0 \mathrm{~V} \pm 10 \%$ Note 3	When A/D converter is stopped		16	32	mA
				When A / D converter is operating ${ }^{\text {Note }} 7$		17	34	mA
		8.38 MHz crystal oscillation operating mode	$\mathrm{V} D=5.0 \mathrm{~V} \pm 10 \%{ }^{\text {Note } 3}$	When A/D converter is stopped		10.5	21	mA
				When A/D converter is operating ${ }^{\text {Note }} 7$		11.5	23	mA
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}+10 \%{ }^{\text {Notes 3,6 }}$	When A/D converter is stopped		7	14	mA
				When A/D converter is operating ${ }^{\text {Note }} 7$		8	16	mA
		5.00 MHz crystal oscillation operating mode	$\mathrm{V} D=3.0 \mathrm{~V} \pm 10 \%{ }^{\text {Note }} 3$	When A/D converter is stopped		4.5	9	mA
				When A/D converter is operating Note 7		5.5	11	mA
			$\mathrm{V}_{\text {DD }}=2.0 \mathrm{~V} \pm 10 \%^{\text {Note }} 4$	When A/D converter is stopped		1	2	mA
				When A/D converter is operating Note 7		2	6	mA
	IDD2	12.0 MHz crystal oscillation HALT mode	V DD $=5.0 \mathrm{~V} \pm 10 \%{ }^{\text {Note } 3}$	When peripheral functions are stopped		2	4	mA
				When peripheral functions are operating			8	mA
		8.38 MHz crystal oscillation HALT mode	$\mathrm{V} \mathrm{DO}=5.0 \mathrm{~V} \pm 10 \%{ }^{\text {Note } 3}$	When peripheral functions are stopped		1.2	2.4	mA
				When peripheral functions are operating			5	mA
			VDD $=3.0 \mathrm{~V}+10 \%$ Notes 3,6	When peripheral functions are stopped		0.6	1.2	mA
				When peripheral functions are operating			2.4	mA
		5.00 MHz crystal oscillation HALT mode	$\mathrm{V}_{\text {D }}=3.0 \mathrm{~V} \pm 10 \%{ }^{\text {Note } 3}$	When peripheral functions are stopped		0.4	0.8	mA
				When peripheral functions are operating			1.7	mA
			VDD $=2.0 \mathrm{~V} \pm 10 \%{ }^{\text {Note }} 4$	When peripheral functions are stopped		0.2	0.4	mA
				When peripheral functions are operating			1.1	mA
	IdD3	32.768 kHz crystal oscillation operating mode ${ }^{\text {Note } 5}$		$\mathrm{V} \mathrm{DD}=5.0 \mathrm{~V} \pm 10 \%$		115	230	$\mu \mathrm{A}$
				V DD $=3.0 \mathrm{~V} \pm 10 \%$		95	190	$\mu \mathrm{A}$
				V DD $=2.0 \mathrm{~V} \pm 10 \%$		75	150	$\mu \mathrm{A}$
	IDD4	32.768 kHz crystal oscillation HALT modeNote 5		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$		30	60	$\mu \mathrm{A}$
				V DD $=3.0 \mathrm{~V} \pm 10 \%$		6	18	$\mu \mathrm{A}$
				V DD $=2.0 \mathrm{~V} \pm 10 \%$		2	10	$\mu \mathrm{A}$
	IdD5	XT1 = Vod STOP mode When feedback resistor is not used		V DD $=5.0 \mathrm{~V} \pm 10 \%$		0.1	30	$\mu \mathrm{A}$
				V DD $=3.0 \mathrm{~V} \pm 10 \%$		0.05	10	$\mu \mathrm{A}$
				V $\mathrm{DD}=2.0 \mathrm{~V} \pm 10 \%$		0.05	10	$\mu \mathrm{A}$

Notes 1. Total current through the internal power supply (VDDO, VDD1) (except the current through pull-up resistors of ports).
2. IDD1 includes the peripheral operation current.
3. When the processor clock control register (PCC) is set to 00 H .
4. When PCC is set to 02 H .
5. When main system clock operation is stopped.
6. The values show the specifications when $\mathrm{VDD}=3.0$ to 3.3 V . The value in the TYP. column show the specifications when VDD $=3.0 \mathrm{~V}$.
7. Includes the current through the $A V_{D D}$ pin.

AC Characteristics

(1) Basic Operation ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VdD}=1.8$ to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX	Unit
Cycle time (Min. instruction execution time)	Tcy	Operating with main system clock	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0.166		16	$\mu \mathrm{s}$
			$3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}} \leq 4.5 \mathrm{~V}$	0.238		16	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.0 \mathrm{~V}$	0.4		16	$\mu \mathrm{s}$
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 2.7 \mathrm{~V}$	1.6		16	$\mu \mathrm{s}$
		Operating with subsystem clock		103.9 Note 1	122	125	$\mu \mathrm{s}$
TIO0, TI01 input high-/low-level width	ttiho, ttilo	$3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		2/fsam+0.1 ${ }^{\text {Note } 2}$			$\mu \mathrm{s}$
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.0 \mathrm{~V}$		$2 / \mathrm{fsam}+0.2^{\text {Note } 2}$			$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		$2 / \mathrm{fsam}_{\text {sam }}+0.5^{\text {Note }} 2$			$\mu \mathrm{s}$
TI50, TI51 input frequency	$\mathrm{f}_{\text {TIS }}$	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		0		4	MHz
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		0		275	kHz
TI50, TI51 input high-/low-level width	ttily, ttils	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		100			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		1.8			ns
Interrupt request input high-/lowlevel width	tinth, tintl	INTP0 to INTP3,	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	1			$\mu \mathrm{s}$
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	2			$\mu \mathrm{s}$
RESET low-level width	trsL	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		10			$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		20			$\mu \mathrm{s}$

Notes 1. Value when the external clock is used. When a crystal resonator is used, it is $114 \mu \mathrm{~S}$ (MIN.).
2. Selection of $f s a m=f x, f x / 4, f x / 64$ is possible using bits 0 and 1 (PRM00, PRM01) of prescaler mode register 0 (PRMO). However, if the TIOO valid edge is selected as the count clock, the value becomes $\mathrm{fs} a \mathrm{~m}=\mathrm{fx} / 8$.

Tcy vs. Vdd (main system clock operation)

(2) Read/write operation ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=4.0$ to 5.5 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		0.3 tcy		ns
Address setup time	tads		20		ns
Address hold time	tadh		6		ns
Input time from address to data	tadD1			$(2+2 n)$ tcy -54	ns
	tadD2			$(3+2 n) t c r-60$	ns
Output time from $\overline{\mathrm{RD}} \downarrow$ to address	trdad		0	100	ns
Input time from $\overline{\mathrm{RD}} \downarrow$ to data	trid1			$(2+2 n)$ tcr -87	ns
	trdo2			$(3+2 n)$ tcy -93	ns
Read data hold time	trdH		0		ns
$\overline{\mathrm{RD}}$ low-level width	troL1		$(1.5+2 n) t \mathrm{tcy}-33$		ns
	trol2		$(2.5+2 n) t \mathrm{tcr}-33$		ns
Input time from $\overline{\mathrm{RD}} \downarrow$ to $\overline{\text { WAIT }} \downarrow$	trowt1			tcy - 43	ns
	trowT2			tcy - 43	ns
Input time from $\overline{\mathrm{WR}} \downarrow$ to $\overline{\mathrm{WAIT}} \downarrow$	twrwt			tcy - 25	ns
WAIT low-level width	twiL		$(0.5+n) t c y+10$	$(2+2 n) t \mathrm{tcr}$	ns
Write data setup time	twos		60		ns
Write data hold time	twor		6		ns
$\overline{\text { WR }}$ low-level width	twrL1		$(1.5+2 n) t \mathrm{tcr}-15$		ns
Delay time from ASTB \downarrow to $\overline{\mathrm{RD}} \downarrow$	tastrd		6		ns
Delay time from ASTB \downarrow to $\overline{\mathrm{WR}} \downarrow$	tastwr		2tcr - 15		ns
Delay time from $\overline{\mathrm{RD}} \uparrow$ to $\mathrm{ASTB} \uparrow$ in external fetch	trdast		$0.8 \mathrm{tcy}-15$	1.2tcy	ns
Hold time from $\overline{\mathrm{RD}} \uparrow$ to address in external fetch	trdad		$0.8 \mathrm{tcy}-15$	$1.2 \mathrm{tcy}+30$	ns
Write data output time from $\overline{\mathrm{RD}} \uparrow$	trowd		40		ns
Write data output time from $\overline{\mathrm{WR}} \downarrow$	twrwd		10	60	ns
Hold time from $\overline{\mathrm{WR}} \uparrow$ to address	twradh		0.8tcy - 15	$1.2 \mathrm{tcy}+30$	ns
Delay time from $\overline{\mathrm{WAIT}} \uparrow$ to $\overline{\mathrm{RD}} \uparrow$	twtrd		0.8 tcy	$2.5 \mathrm{tcy}+25$	ns
Delay time from $\overline{\text { WAIT }} \uparrow$ to $\overline{\mathrm{WR}} \uparrow$	twTwr		0.8 tcy	$2.5 \mathrm{tcy}+25$	ns

Caution Tcy can only be used when the MIN. value is $0.238 \mu \mathrm{~s}$.
Remarks 1. $\mathrm{tcy}=\mathrm{Tcy} / 4$
2. n indicates the number of waits.
3. $\mathrm{C} L=100 \mathrm{pF}$ (CL is the load capacitance of the AD0 to AD7, A8 to $\mathrm{A} 15, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{WAIT}}$, and ASTB pins.)
(2) Read/write operation ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=2.7$ to 4.0 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	$\mathrm{t}_{\text {ASTH }}$		0.3 tcy		ns
Address setup time	tads		30		ns
Address hold time	tadh		10		ns
Input time from address to data	$t_{\text {ADD1 }}$			$(2+2 n) t c y-108$	ns
	$\mathrm{t}_{\text {ADD2 }}$			$(3+2 n) t c y-120$	ns
Output time from $\overline{\mathrm{RD}} \downarrow$ to address	trdad		0	200	ns
Input time from $\overline{\mathrm{RD}} \downarrow$ to data	trdD1			$(2+2 n) t c y-148$	ns
	trdo2			$(3+2 n) t \mathrm{cr}-162$	ns
Read data hold time	trdh		0		ns
$\overline{\mathrm{RD}}$ low-level width	trdL1		$(1.5+2 n)$ tcy -40		ns
	trid2		$(2.5+2 n)$ tcy -40		ns
Input time from $\overline{\mathrm{RD}} \downarrow$ to $\overline{\mathrm{WAIT}} \downarrow$	trdwt1			tcy - 75	ns
	trdwt2			tcy - 60	ns
Input time from $\overline{\mathrm{WR}} \downarrow$ to $\overline{\mathrm{WAIT}} \downarrow$	twrwt			tcy - 50	ns
$\overline{\text { WAIT low-level width }}$	twTL		$(0.5+2 n) t \mathrm{cy}+10$	$(2+2 n) t c y$	ns
Write data setup time	twds		60		ns
Write data hold time	twDH		10		ns
$\overline{\text { WR }}$ low-level width	twRL1		$(1.5+2 n)$ tcy -30		ns
Delay time from ASTB \downarrow to $\overline{\mathrm{RD}} \downarrow$	tastrd		10		ns
Delay time from ASTB \downarrow to $\overline{\mathrm{WR}} \downarrow$	tastwr		$2 \mathrm{tcy}-30$		ns
Delay time from $\overline{\mathrm{RD}} \uparrow$ to $\mathrm{ASTB} \uparrow$ in external fetch	trdast		$0.8 t \mathrm{tcy}-30$	1.2 tcy	ns
Hold time from $\overline{\mathrm{RD}} \uparrow$ to address in external fetch	trdadh		$0.8 t \mathrm{cy}-30$	$1.2 \mathrm{tcy}+60$	ns
Write data output time from $\overline{\mathrm{RD}} \uparrow$	trdwd		40		ns
Write data output time from $\overline{\mathrm{WR}} \downarrow$	twrwd		20	120	ns
Hold time from $\overline{\mathrm{WR}} \uparrow$ to address	twradh		0.8tcy - 30	$1.2 \mathrm{tcy}+60$	ns
Delay time from $\overline{\mathrm{WAIT}} \uparrow$ to $\overline{\mathrm{RD}} \uparrow$	twTRD		0.5 tcy	$2.5 \mathrm{tcy}+50$	ns
Delay time from $\overline{\mathrm{WAIT}} \uparrow$ to $\overline{\mathrm{WR}} \uparrow$	twTwr		0.5tcy	$2.5 t c y+50$	ns

Caution Tcy can only be used when the MIN. value is $0.4 \mu \mathrm{~s}$.
Remarks 1. $\mathrm{tcy}=\mathrm{Tcy} / 4$
2. n indicates the number of waits.
3. $C L=100 \mathrm{pF}$ (CL is the load capacitance of the AD0 to AD7, A8 to $A 15, \overline{R D}, \overline{\mathrm{WR}}, \overline{\mathrm{WAIT}}$, and ASTB pins.)
(2) Read/write operation ($\mathrm{T}_{\mathrm{A}}=-\mathbf{4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=1.8$ to 2.7 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		0.3 tcy		ns
Address setup time	tads		120		ns
Address hold time	tadh		20		ns
Input time from address to data	tadd 1			$(2+2 n) t \mathrm{tcr}-233$	ns
	tadD2			$(3+2 n) t c y-240$	ns
Output time from $\overline{\mathrm{RD}} \downarrow$ to address	trdad		0	400	ns
Input time from $\overline{\mathrm{RD}} \downarrow$ to data	trid1			(2+2n)tcr - 325	ns
	trDD2			$(3+2 n) t \mathrm{cy}-332$	ns
Read data hold time	troh		0		ns
$\overline{\mathrm{RD}}$ low-level width	trdL1		$(1.5+2 \mathrm{n}) \mathrm{tcy}-92$		ns
	trdL2		(2.5 + 2n)tcr - 92		ns
Input time from $\overline{\mathrm{RD}} \downarrow$ to $\overline{\mathrm{WAIT}} \downarrow$	trdwt 1			tor - 350	ns
	trowt2			tcy - 132	ns
Input time from $\overline{\mathrm{WR}} \downarrow$ to $\overline{\text { WAIT }} \downarrow$	twrwt			tor - 100	ns
$\overline{\text { WAIT }}$ low-level width	twiL		$(0.5+2 n)$ tcr +10	$(2+2 n) t$ tor	ns
Write data setup time	twos		60		ns
Write data hold time	twoh		20		ns
$\overline{\text { WR }}$ low-level width	twrL1		$(1.5+2 \mathrm{n}) \mathrm{tcr}-60$		ns
Delay time from ASTB \downarrow to $\overline{\mathrm{RD}} \downarrow$	tastro		20		ns
Delay time from ASTB \downarrow to $\overline{\mathrm{WR}} \downarrow$	tastwr		$2 \mathrm{tcy}-60$		ns
Delay time from $\overline{\mathrm{RD}} \uparrow$ to $\mathrm{ASTB} \uparrow$ in external fetch	trdast		$0.8 \mathrm{tcy}-60$	1.2tcr	ns
Hold time from $\overline{\mathrm{RD}} \uparrow$ to address in external fetch	trdad		$0.8 \mathrm{tcy}-60$	$1.2 \mathrm{tcy}+120$	ns
Write data output time from $\overline{\mathrm{RD}} \uparrow$	trowd		40		ns
Write data output time from $\overline{\mathrm{WR}} \downarrow$	twrwd		40	240	ns
Hold time from $\overline{\mathrm{WR}} \uparrow$ to address	twradh		0.8tcy - 60	$1.2 \mathrm{tcr}+120$	ns
	twTRD		0.5 tcy	$2.5 \mathrm{tcr}+100$	ns
Delay time from $\overline{\text { WAIT }} \uparrow$ to $\overline{\mathrm{WR}} \uparrow$	twtwr		0.5 tcy	$2.5 \mathrm{tcr}+100$	ns

Caution Tcy can only be used when the MIN. value is $1.6 \mu \mathrm{~s}$.

Remarks 1. $\mathrm{tcy}=\mathrm{Tcy} / 4$
2. n indicates the number of waits.
3. $\mathrm{C} L=100 \mathrm{pF}$ (C L is the load capacitance of the AD0 to AD7, A8 to $A 15, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{WAIT}}$, and ASTB pins.)
(3) Serial Interface ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)
(a) 3-wire serial I/O mode (SCK3n... Internal clock output)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK } 3 n}$ cycle time	tkcy1	$4.5 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$		666			ns
		$3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$		954			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.0 \mathrm{~V}$		1600			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		3200			ns
$\overline{\text { SCK3n high-/ }}$ low-level width	tKH1, tkL1	$3.0 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$		tксүı/2-50			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.0 \mathrm{~V}$		tксу1/2-100			ns
$\begin{aligned} & \text { SI3n setup time } \\ & \text { (to } \overline{\text { SCK3n } \uparrow \text {) }} \end{aligned}$	tsik1	$3.0 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$		100			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}<3.0 \mathrm{~V}$		150			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		300			ns
SI3n hold time (from $\overline{\text { SCK3n }} \uparrow$)	tksı11	$4.5 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$		300			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$		400			ns
Delay time from SCK3n \downarrow to SO3n output	tkso1	$\mathrm{C}=100 \mathrm{pF}$ Note	$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			200	ns
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$			300	ns

Note C is the load capacitance of the $\overline{\mathrm{SCK3n}}$ and SO3n output lines.
(b) 3-wire serial I/O mode (SCK3n... External clock input)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK3n }}$ cycle time	tkcy2	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		666			ns
		$3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$		800			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}<3.0 \mathrm{~V}$		1600			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		3200			ns
SCK3n high-/ low-level width	tKH2, tKı2	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		333			ns
		$3.0 \mathrm{~V} \leq \mathrm{VDD}<4.5 \mathrm{~V}$		400			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.0 \mathrm{~V}$		800			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}$ DD $<2.7 \mathrm{~V}$		1600			ns
SI3n setup time (to $\overline{\mathrm{SCK} 3 n} \uparrow$)	tsik2			100			ns
SI3n hold time (from $\overline{\mathrm{SCK} 3 \mathrm{n}} \uparrow$)	tksı2	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		300			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$		400			ns
Delay time from $\overline{\mathrm{SCK} 3 n} \downarrow$ to $\mathrm{SO} 3 n$ output	tKsO2	$\mathrm{C}=100 \mathrm{pF}^{\text {Note }}$	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			200	ns
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$			300	ns

Note C is the load capacitance of the SO3n output line.

Remark $\mathrm{n}=0,1$
(c) UART mode (dedicated baud-rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		$4.5 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			187500	bps
		$3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$			131031	bps
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.0 \mathrm{~V}$			78125	bps
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			39063	bps

(d) UART mode (external clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK0 cycle time	tксуз	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	800			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	1600			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	3200			ns
ASCK0 high-/low-level width	tкнз, tкL3	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	400			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	800			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	1600			ns
Transfer rate		$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			39063	bps
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			19531	bps
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			9766	bps

(e) UART mode (infrared data transfer mode)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Transfer rate		$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		131031	bps
Allowable bit rate error		$4.0 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		± 0.87	$\%$
Output pulse width		$4.0 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	1.2	$0.24 / \mathrm{fbr} \mathrm{VNote}$	$\mu \mathrm{s}$
Input pulse width		$4.0 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	$4 / \mathrm{fx}$		$\mu \mathrm{s}$

Note fbr: Specified baud rate
A / D Converter Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=\mathrm{AVDD}=1.8$ to 5.5 V , $\mathrm{AVss}=\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			10	10	10	bit
Overall errorNote		$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }} \leq 5.5 \mathrm{~V}$		± 0.2	± 0.4	\%FSR
		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<4.0 \mathrm{~V}$		± 0.3	± 0.6	\%FSR
		$1.8 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<2.7 \mathrm{~V}$		± 0.6	± 1.2	\%FSR
Conversion time	tconv	$4.5 \mathrm{~V} \leq \mathrm{AV}$ DD $\leq 5.5 \mathrm{~V}$	12		96	$\mu \mathrm{s}$
		$4.0 \mathrm{~V} \leq \mathrm{AVDD}<4.5 \mathrm{~V}$	14		96	$\mu \mathrm{s}$
		$2.7 \mathrm{~V} \leq \mathrm{AV}$ DD $<4.0 \mathrm{~V}$	17		96	$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{AV}$ DD $<2.7 \mathrm{~V}$	28		96	$\mu \mathrm{s}$
Zero-scale error ${ }^{\text {Notes 1, }} 2$		$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }} \leq 5.5 \mathrm{~V}$			± 0.4	\%FSR
		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }}<4.0 \mathrm{~V}$			± 0.6	\%FSR
		$1.8 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<2.7 \mathrm{~V}$			± 1.2	\%FSR
Full-scale error ${ }^{\text {Notes 1, }} 2$		$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }} \leq 5.5 \mathrm{~V}$			± 0.4	\%FSR
		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<4.0 \mathrm{~V}$			± 0.6	\%FSR
		$1.8 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<2.7 \mathrm{~V}$			± 1.2	\%FSR
Integral linearity error ${ }^{\text {Note } 1}$		$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }} \leq 5.5 \mathrm{~V}$			± 2.5	LSB
		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<4.0 \mathrm{~V}$			± 4.5	LSB
		$1.8 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<2.7 \mathrm{~V}$			± 8.5	LSB
Differential linearity error		$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {ReF }} \leq 5.5 \mathrm{~V}$			± 1.5	LSB
		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }} \leq 4.0 \mathrm{~V}$			± 2.0	LSB
		$1.8 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<2.7 \mathrm{~V}$			± 3.5	LSB
Analog input voltage	Vian		0		AVref	V
Reference voltage	AV ${ }_{\text {ref }}$		1.8		AV ${ }_{\text {dD }}$	V
Resistance between $A V_{\text {ref }}$ and $A V s s$	Rref	During A/D conversion operation	20	40		$\mathrm{k} \Omega$

Notes 1. Excluding quantization error ($\pm 1 / 2$ LSB).
2. Indicated as a ratio to the full-scale value (\%FSR).

Remark When the μ PD78F0034B is used as an 8-bit resolution A/D converter, the specifications are the same as for the μ PD780024A Subseries A/D converter.

Remark The impedance of the analog input pins is shown below.
[Equivalent circuit]

[Parameter value]

$\mathrm{AV} \mathrm{VDD}^{\prime}$	R 1	R 2	C 1	C 2	C 3
2.7 V	$12 \mathrm{k} \Omega$	$8.0 \mathrm{k} \Omega$	3.0 pF	3.0 pF	2.0 pF
4.5 V	$4 \mathrm{k} \Omega$	$2.7 \mathrm{k} \Omega$	3.0 pF	1.4 pF	2.0 pF

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Voddr		1.6		5.5	V
Data retention supply current	Iddor	Subsystem clock stop (XT1 = VDD) and feed-back resistor disconnected		0.1	30	$\mu \mathrm{A}$
Release signal set time	tsreL		0			$\mu \mathrm{s}$
Oscillation stabilization wait time	twait	Release by $\overline{\mathrm{RESET}}$		$2^{17} / \mathrm{fx}$		s
		Release by interrupt request		Note		s

Note Selection of $2^{12} / \mathrm{fx}$ and $2^{14} / \mathrm{fx}$ to $2^{17} / \mathrm{fx}$ is possible using bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time select register (OSTS).

Flash Memory Programming Characteristics ($\mathrm{T}_{\mathrm{A}}=+10$ to $+40^{\circ} \mathrm{C}, \mathrm{VdD}=1.8$ to 5.5 V , V ss $=\mathrm{AVss}=0 \mathrm{~V}$)
(1) Write erase characteristics

Notes 1. The recommended setting value of the step erase time is 0.2 s .
2. The prewrite time before erasure and the erase verify time (writeback time) are not included.
3. The recommended setting value of the writeback time is 50 ms .
4. Writeback is executed once by the issuance of the writeback command. Therefore, the number of retries must be the maximum value minus the number of commands issued.
5. The recommended setting value of the step write time is $50 \mu \mathrm{~s}$.
6. The actual write time per word is 100μ s longer. The internal verify time during or after a write is not included.
7. When a product is first written after shipment, "erase \rightarrow write" and "write only" are both taken as one rewrite.
Example: P: Write, E: Erase
Shipped product $\quad \rightarrow \mathrm{P} \rightarrow \mathrm{E} \rightarrow \mathrm{P} \rightarrow \mathrm{E} \rightarrow \mathrm{P}: 3$ rewrites
Shipped product $\rightarrow \mathrm{E} \rightarrow \mathrm{P} \rightarrow \mathrm{E} \rightarrow \mathrm{P} \rightarrow \mathrm{E} \rightarrow \mathrm{P}: 3$ rewrites
(2) Serial write operation characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Vpp set time	tpsron	Vpp high voltage	1.0			$\mu \mathrm{s}$
Set time from $\mathrm{V}_{\text {DD }} \uparrow$ to $\mathrm{V}_{P P} \uparrow$	tDRPSR	VPP high voltage	10			$\mu \mathrm{S}$
Set time from VPP \uparrow to $\overline{\mathrm{RESET}} \uparrow$	tPSRRF	Vpp high voltage	1.0			$\mu \mathrm{S}$
Vpp count start time from RESET \uparrow	tracF		1.0			$\mu \mathrm{S}$
Count execution time	tcount				2.0	ms
Vpp counter high-level width	tch		8.0			$\mu \mathrm{S}$
Vpp counter low-level width	tCL		8.0			$\mu \mathrm{s}$
VPP counter noise elimination width	tnfw			40		ns

$9.2 \mu \mathrm{PD} 78 \mathrm{~F} 0034 \mathrm{BY}, 78 \mathrm{~F} 0034 \mathrm{BY}(\mathrm{A})$

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Notes 1. 6.5 V or below
(Note 2 is explained on the following page.)

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Notes 2. Make sure that the following conditions of the VPP voltage application timing are satisfied when the flash memory is written.

- When supply voltage rises

Vpp must exceed Vdd $10 \mu \mathrm{~s}$ or more after V_{DD} has reached the lower-limit value (1.8 V) of the operating voltage range (see a in the figure below).

- When supply voltage drops

Vod must be lowered $10 \mu \mathrm{~s}$ or more after VPP falls below the lower-limit value (1.8 V) of the operating voltage range of $V_{D D}$ (see b in the figure below).

Capacitance ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input capacitance	$\mathrm{CIN}^{\text {n }}$	$\mathrm{f}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V .				15	pF
I/O capacitance	C_{\circ}	$\mathrm{f}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V .	P00 to P03, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75,			15	pF
			P30 to P33			20	pF

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

Main System Clock Oscillator Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator		Oscillation frequency (fx) Note 1	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	1.0		8.38	MHz
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	1.0		5.0	
		Oscillation stabilization time ${ }^{\text {Note } 2}$	After Vod reaches oscillation voltage range MIN.			4	ms
Crystal resonator		Oscillation frequency (fx) Note 1	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	1.0		8.38	MHz
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	1.0		5.0	
		Oscillation	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			10	ms
		stabilization time ${ }^{\text {Note } 2}$	$1.8 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$			30	
External		X1 input	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	1.0		8.38	MHz
	$\begin{array}{ll} \mathrm{x}_{2} & \mathrm{x}_{1} \\ \hline \end{array}$	frequency (fx) ${ }^{\text {Note }} 1$	$1.8 \mathrm{~V} \leq \mathrm{VDD}^{2} 4.0 \mathrm{~V}$	1.0		5.0	
	$\square \bigcirc$	X1 input	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	50		500	ns
	\triangle	high-/low-level width (txh, txL)	$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	85		500	

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
2. Time required to stabilize oscillation after reset or STOP mode release.

Cautions 1. When using the main system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss1.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

2. When the main system clock is stopped and the system is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

Remark For the resonator selection and oscillator constant, customers are required to either evaluate the oscillation themselves or apply to the resonator manufacture for evaluation.

Subsystem Clock Oscillator Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VdD}=1.8$ to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator		Oscillation frequency (fxt) ${ }^{\text {Note }} \mathbf{1}$		32	32.768	35	kHz
		Oscillation stabilization time ${ }^{\text {Note } 2}$	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		1.2	2	s
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			10	
External clock	$\text { XT2 } \quad \text { XT1 }$	X1 input frequency (fxt) Note 1		32		38.5	kHz
		X1 input high-/low-level width ($\mathrm{tx} \mathbf{\tau} \mathrm{H}, \mathrm{txiL}$)		12		15	$\mu \mathrm{s}$

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
2. Time required to stabilize oscillation after VDD reaches oscillator voltage MIN.

Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor to the same potential as Vss1.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

2. The subsystem clock oscillator is designed as a low-amplitude circuit for reducing power consumption, and is more prone to malfunction due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.

Remark For the resonator selection and oscillator constant, customers are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V} D \mathrm{D}=1.8$ to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high	Іон	Per pin				-1	mA
		All pins				-15	mA
Output current, low	lot	Per pin for P00 to P03, P20 to P25, P34 to P36, P40 to P47, P64 to P67, P70 to P75				10	mA
		Per pin for P30 to P33, P50 to P57				15	mA
		Total for P00 to P03, P40 to P47, P64 to P67, P70 to P75				20	mA
		Total for P20 to P25				10	mA
		Total for P30 to P36				70	mA
		Total for P50 to P57				70	mA
Input voltage, high	$\mathrm{V}_{\mathrm{H} 1}$	```P10 to P17, P21, P24, P35, P40 to P47, P50 to P57, P64 to P67, P74, P75```	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0.7 VdD		VDD	V
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0.8VDD		VDD	V
	$\mathrm{V}_{\mathbf{H} 2}$	P00 to P03, P20, P22, P23, P25, P34, P36, P70 to P73, RESET	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0.8 VdD		VDD	V
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0.85 VDD		VDD	V
	Vוнз	P30 to P33 (N -ch open-drain)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0.7 VdD		5.5	V
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0.8 VdD		5.5	V
	$\mathrm{V}_{\text {H/4 }}$	X1, X2	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}} \leq 5.5 \mathrm{~V}$	$V_{\text {DD }}-0.5$		Vdo	V
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	$V_{D D}-0.2$		Vdo	V
	Vוн5	XT1, XT2	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0.8 VdD		VDD	V
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	0.9 VDD		Vdo	V
Input voltage, Iow	VIL1	$\begin{aligned} & \text { P10 to P17, P21, P24, P35, } \\ & \text { P40 to P47, P50 to P57, } \\ & \text { P64 to P67, P74, P75 } \end{aligned}$	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}} \leq 5.5 \mathrm{~V}$	0		0.3VDD	V
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0		0.2VDD	V
	VIL2	P00 to P03, P20, P22, P23, P25, P34, P36, P70 to P73, $\overline{\text { RESET }}$	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0		0.2VDD	V
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0		0.15 VDD	V
	Vıı3	P30 to P33	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0		0.3 Vdo	V
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	0		0.2 VDD	V
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0		0.1 VDD	V
	VIL4	X1, X2	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0		0.4	V
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0		0.2	V
	VIL5	XT1, XT2	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0		0.2 VDD	V
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	0		$0.1 \mathrm{~V}_{\mathrm{DD}}$	V
Output voltage, high	Vor1	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{loH}=-1 \mathrm{~mA}$		$V_{D D}-1.0$		VDD	V
		$1.8 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$, $\mathrm{I} \mathrm{OH}=-100 \mu \mathrm{~A}$		VDD - 0.5		Vdo	V
Output voltage, low	Vol1	P30 to P33	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$,			2.0	V
		P50 to P57	$\mathrm{loL}=15 \mathrm{~mA}$		0.4	2.0	V
		P00 to P03, P20 to P25, P34 to P36 P40 to P47, P64 to P67, P70 to P75	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V} D \mathrm{DD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL}=1.6 \mathrm{~mA} \end{aligned}$			0.4	V
	Vot2	loL $=400 \mu \mathrm{~A}$				0.5	V

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=1.8$ to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ІІня	$V_{I N}=V_{D D}$	P00 to P03, P10 to P17, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75, RESET			3	$\mu \mathrm{A}$
	ІІнн2		X1, X2, XT1, XT2			20	$\mu \mathrm{A}$
	ІІнз	$\mathrm{VIN}=5.5 \mathrm{~V}$	P30 to P33			3	$\mu \mathrm{A}$
Input leakage current, low	ILL1	$\mathrm{VIN}=0 \mathrm{~V}$	P00 to P03, P10 to P17, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75, $\overline{\text { RESET }}$			-3	$\mu \mathrm{A}$
	LıLL2		X1, X2, XT1, XT2			-20	$\mu \mathrm{A}$
	Lııз		P30 to P33			-3	$\mu \mathrm{A}$
Output leakage current, high	ILor	Vout $=$ Vdd				3	$\mu \mathrm{A}$
Output leakage current, low	ILOL	Vout $=0 \mathrm{~V}$				-3	$\mu \mathrm{A}$
Software pullup resistor	R	$\begin{aligned} & \text { Vin = } 0 \mathrm{~V}, \\ & \text { P00 to P03, P20 to P25, P34 to P36, P40 to P47, } \\ & \text { P50 to P57, P64 to P67, P70 to P75 } \end{aligned}$		15	30	90	k Ω

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-\mathbf{4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{VdD}=1.8$ to 5.5 V)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Power supply current ${ }^{\text {Note }} 1$	IdD1 ${ }^{\text {Note } 2}$	8.38 MHz crystal oscillation operating mode	Vod $=5.0 \mathrm{~V} \pm 10 \%$ Note 3	When A/D converter is stopped		10.5	21	mA
				When A/D converter is operating ${ }^{\text {Note }} 6$		11.5	23	mA
		5.00 MHz crystal oscillation operating mode	$V_{\text {DD }}=3.0 \mathrm{~V} \pm 10 \%$ Note 3	When A/D converter is stopped		4.5	9	mA
				When A / D converter is operating ${ }^{\text {Note }} 6$		5.5	11	mA
			$V_{\text {DD }}=2.0 \mathrm{~V} \pm 10 \%$ Note 4	When A/D converter is stopped		1	2	mA
				When A/D converter is operating ${ }^{\text {Note }} 6$		2	6	mA
	IDD2	$8.38 \mathrm{MHz}$ crystal oscillation HALT mode	$V_{\text {Do }}=5.0 \mathrm{~V} \pm 10 \%$ Note 3	When peripheral functions are stopped		1.2	2.4	mA
				When peripheral functions are operating			5	mA
		$5.00 \mathrm{MHz}$ crystal oscillation HALT mode	$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$ Note 3	When peripheral functions are stopped		0.4	0.8	mA
				When peripheral functions are operating			1.7	mA
			$V_{D D}=2.0 \mathrm{~V} \pm 10 \%$ Note 4	When peripheral functions are stopped		0.2	0.4	mA
				When peripheral functions are operating			1.1	mA
	IdD3	32.768 kHz crystal oscillation operating mode ${ }^{\text {Note } 5}$		V DD $=5.0 \mathrm{~V} \pm 10 \%^{\text {Note } 2}$		115	230	$\mu \mathrm{A}$
				V DD $=3.0 \mathrm{~V} \pm 10 \%{ }^{\text {Note } 2}$		95	190	$\mu \mathrm{A}$
				$\mathrm{V}_{\text {DD }}=2.0 \mathrm{~V} \pm 10 \%{ }^{\text {Note }} 3$		75	150	$\mu \mathrm{A}$
	IDD4	32.768 kHz crystal oscillation HALT mode ${ }^{\text {Note } 5}$		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%{ }^{\text {Note } 2}$		30	60	$\mu \mathrm{A}$
				$\mathrm{V}_{\text {dD }}=3.0 \mathrm{~V} \pm 10 \%{ }^{\text {Note } 2}$		6	18	$\mu \mathrm{A}$
				$\mathrm{V}_{\text {DD }}=2.0 \mathrm{~V} \pm 10 \%{ }^{\text {Note }} 3$		2	10	$\mu \mathrm{A}$
	IDD5	XT1 = VDD STOP mode When feedback resistor is not used		$\mathrm{V}_{\text {DD }}=5.0 \mathrm{~V} \pm 10 \%^{\text {Note } 2}$		0.1	30	$\mu \mathrm{A}$
				$\mathrm{V}_{\text {DD }}=3.0 \mathrm{~V} \pm 10 \%{ }^{\text {Note } 2}$		0.05	10	$\mu \mathrm{A}$
				VDD $=2.0 \mathrm{~V} \pm 10 \%{ }^{\text {Note } 3}$		0.05	10	$\mu \mathrm{A}$

Notes 1. Total current through the internal power supply (VDDo, VDD1) (except the current through pull-up resistors of ports).
2. IDD1 includes the peripheral operation current.
3. When the processor clock control register (PCC) is set to 00 H .
4. When PCC is set to 02 H .
5. When main system clock operation is stopped.
6. Includes the current through the AVdD pin.

AC Characteristics

(1) Basic Operation ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Cycle time (Min. instruction execution time)	Tcy	Operating with main system clock	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0.238		16	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	0.4		16	$\mu \mathrm{s}$
			$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	1.6		16	$\mu \mathrm{s}$
		Operating with subsystem clock		103.9 Note 1	122	125	$\mu \mathrm{s}$
TIOO, TIO1 input high-/low-level width	ttiho, ttilo	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		$2 / \mathrm{fsam}_{\text {sam }}+0.1{ }^{\text {Note } 2}$			$\mu \mathrm{s}$
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$		$2 / \mathrm{fsam}_{\text {sam }}+0.2^{\text {Note } 2}$			$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		$2 / \mathrm{fsam}_{\text {sam }}+0.5^{\text {Note } 2}$			$\mu \mathrm{s}$
TI50, TI51 input frequency	ftis	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		0		4	MHz
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		0		275	kHz
TI50, TI51 input high-/low-level width	ttihs, ttils	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		100			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		1.8			ns
Interrupt request input high-/lowlevel width	tinth, tintl	INTP0 to INTP3, P40 to P47	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	1			$\mu \mathrm{s}$
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	2			$\mu \mathrm{s}$
RESET low-level width	trsL	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		10			$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\text {dD }}<2.7 \mathrm{~V}$		20			$\mu \mathrm{s}$

Notes 1. Value when the external clock is used. When a crystal resonator is used, it is $114 \mu \mathrm{~s}$ (MIN.).
2. Selection of $f_{s a m}=f_{x}, f_{x} / 4, f x / 64$ is possible using bits 0 and 1 (PRM00, PRM01) of prescaler mode register 0 (PRM0). However, if the TIOO valid edge is selected as the count clock, the value becomes $\mathrm{f}_{\mathrm{sam}}=\mathrm{fx} / 8$.

Tcy vs. Vdd (main system clock operation)

(2) Read/write operation ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=4.0$ to 5.5 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		0.3tcy		ns
Address setup time	tads		20		ns
Address hold time	tadH		6		ns
Input time from address to data	tadD1			$(2+2 n)$ tcy - 54	ns
	tadd2			$(3+2 n)$ tcy - 60	ns
Output time from $\overline{\mathrm{RD}} \downarrow$ to address	trdad		0	100	ns
Input time from $\overline{\mathrm{RD}} \downarrow$ to data	trdo1			$(2+2 n)$ tcy - 87	ns
	trDD2			$(3+2 n)$ tcy - 93	ns
Read data hold time	troh		0		ns
$\overline{\mathrm{RD}}$ low-level width	trDL1		$(1.5+2 n)$ tcy -33		ns
	trDL2		$(2.5+2 n)$ tcy - 33		ns
Input time from $\overline{\mathrm{RD}} \downarrow$ to $\overline{\mathrm{WAIT}} \downarrow$	trdwt1			tcr - 43	ns
	trowt2			tcy - 43	ns
Input time from $\overline{\mathrm{WR}} \downarrow$ to $\overline{\mathrm{WAIT}} \downarrow$	twrwt			tcr - 25	ns
$\overline{\text { WAIT }}$ low-level width	twtL		$(0.5+n)$ tcy +10	$(2+2 n) t \mathrm{cr}$	ns
Write data setup time	twos		60		ns
Write data hold time	twDH		6		ns
$\overline{\text { WR }}$ low-level width	twRL1		$(1.5+2 n) t \mathrm{ccy}-15$		ns
Delay time from ASTB \downarrow to $\overline{\mathrm{RD}} \downarrow$	tastrd		6		ns
Delay time from ASTB \downarrow to $\overline{\mathrm{WR}} \downarrow$	tastwr		2tcy - 15		ns
Delay time from $\overline{\mathrm{RD}} \uparrow$ to $\mathrm{ASTB} \uparrow$ in external fetch	trdast		$0.8 t c y-15$	1.2 tcy	ns
Hold time from $\overline{\mathrm{RD}} \uparrow$ to address in external fetch	trdadh		$0.8 t \mathrm{tcy}-15$	$1.2 \mathrm{tcy}+30$	ns
Write data output time from $\overline{\mathrm{RD}} \uparrow$	trowd		40		ns
Write data output time from $\overline{W R} \downarrow$	twrwd		10	60	ns
Hold time from $\overline{\mathrm{WR}} \uparrow$ to address	twradh		0.8tcy - 15	$1.2 \mathrm{tcy}+30$	ns
Delay time from $\overline{\mathrm{WAIT}} \uparrow$ to $\overline{\mathrm{RD}} \uparrow$	twTRD		0.8 tcy	$2.5 t c y+25$	ns
Delay time from $\overline{\mathrm{WAIT}} \uparrow$ to $\overline{\mathrm{WR}} \uparrow$	twTwr		0.8tcy	2.5 tcy +25	ns

Caution Tcy can only be used when the MIN. value is $0.238 \mu \mathrm{~s}$.
Remarks 1. tcy $=\mathrm{Tcy} / 4$
2. n indicates the number of waits.
3. $C L=100 \mathrm{pF}$ (CL is the load capacitance of the AD0 to AD7, A8 to $A 15, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{WAIT}}$, and ASTB pins.)
(2) Read/write operation ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=2.7$ to 4.0 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		0.3 tcr		ns
Address setup time	tads		30		ns
Address hold time	tadh		10		ns
Input time from address to data	tadd			$(2+2 n) t c y-108$	ns
	tadd2			$(3+2 n) t c r-120$	ns
Output time from $\overline{\mathrm{RD}} \downarrow$ to address	trdad		0	200	ns
Input time from $\overline{\mathrm{RD}} \downarrow$ to data	trdo1			$(2+2 n) t c r-148$	ns
	trdo2			$(3+2 n) t c r-162$	ns
Read data hold time	troh		0		ns
$\overline{\mathrm{RD}}$ low-level width	troL1		$(1.5+2 n) t c y-40$		ns
	trdL2		$(2.5+2 n) t c y-40$		ns
Input time from $\overline{\mathrm{RD}} \downarrow$ to $\overline{\text { WAIT }} \downarrow$	trdwt1			tcy - 75	ns
	trowt2			toy - 60	ns
Input time from $\overline{\mathrm{WR}} \downarrow$ to $\overline{\text { WAIT }} \downarrow$	twrwt			toy - 50	ns
WAIT low-level width	twiL		$(0.5+2 n) t c r+10$	$(2+2 n) t$ tcr	ns
Write data setup time	twos		60		ns
Write data hold time	twor		10		ns
$\overline{\text { WR low-level width }}$	twrL1		$(1.5+2 n)$ tcy -30		ns
Delay time from ASTB \downarrow to $\overline{\mathrm{RD}} \downarrow$	tastro		10		ns
Delay time from ASTB \downarrow to $\overline{\mathrm{WR}} \downarrow$	tastwr		$2 \mathrm{tcr}-30$		ns
Delay time from $\overline{\mathrm{RD}} \uparrow$ to $\mathrm{ASTB} \uparrow$ in external fetch	trdast		0.8tcy - 30	1.2tcy	ns
Hold time from $\overline{\mathrm{RD}} \uparrow$ to address in external fetch	trdad		0.8tcy - 30	$1.2 \mathrm{tcy}+60$	ns
Write data output time from $\overline{\mathrm{RD}} \uparrow$	trowd		40		ns
Write data output time from $\overline{\mathrm{WR}} \downarrow$	twrwo		20	120	ns
Hold time from $\overline{W R} \uparrow$ to address	twradh		0.8tcy - 30	$1.2 \mathrm{tcy}+60$	ns
Delay time from $\overline{\text { WAIT } \uparrow \text { to } \overline{\mathrm{RD}} \uparrow}$	twtrd		0.5 tcr	$2.5 \mathrm{tcy}+50$	ns
Delay time from $\overline{\text { WAIT } \uparrow \text { to } \overline{\mathrm{WR}} \uparrow \sim}$	twiwr		0.5 tcr	$2.5 \mathrm{tc} \mathrm{c}+50$	ns

Caution Tcy can only be used when the MIN. value is $0.4 \mu \mathrm{~s}$.

Remarks 1. $\mathrm{tcy}=\mathrm{Tcy} / 4$
2. n indicates the number of waits.
3. $C L=100 \mathrm{pF}(\mathrm{CL}$ is the load capacitance of the AD0 to AD7, A8 to $A 15, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{WAIT}}$, and ASTB pins.)
(2) Read/write operation ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 2.7 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		0.3 tcr		ns
Address setup time	tads		120		ns
Address hold time	tadh		20		ns
Input time from address to data	tadd			$(2+2 n) t \mathrm{cy}-233$	ns
	tadd2			$(3+2 n) t \mathrm{cr}-240$	ns
Output time from $\overline{\mathrm{RD}} \downarrow$ to address	trdad		0	400	ns
Input time from $\overline{\mathrm{RD}} \downarrow$ to data	trid1			$(2+2 n) t \mathrm{cy}-325$	ns
	trDD2			$(3+2 n) t \mathrm{cr}-332$	ns
Read data hold time	tron		0		ns
$\overline{\mathrm{RD}}$ low-level width	trdL1		$(1.5+2 n) t \mathrm{tcy}-92$		ns
	trdL2		$(2.5+2 n) t c r-92$		ns
Input time from $\overline{\mathrm{RD}} \downarrow$ to $\overline{\text { WAIT }} \downarrow$	trowt1			tcr - 350	ns
	trowt2			tcr - 132	ns
Input time from $\overline{\mathrm{WR}} \downarrow$ to $\overline{\text { WAIT }} \downarrow$	twrwt			tcr - 100	ns
$\overline{\text { WAIT }}$ low-level width	twiL		$(0.5+2 n) t \mathrm{tcy}+10$	$(2+2 n) t \mathrm{tcr}$	ns
Write data setup time	twos		60		ns
Write data hold time	twoh		20		ns
$\overline{\text { WR }}$ low-level width	twRL1		$(1.5+2 n) t \mathrm{tcr}-60$		ns
Delay time from ASTB \downarrow to $\overline{\mathrm{RD}} \downarrow$	tastrd		20		ns
Delay time from ASTB \downarrow to $\overline{\mathrm{WR}} \downarrow$	tastwr		$2 \mathrm{tcy}-60$		ns
Delay time from $\overline{\mathrm{RD}} \uparrow$ to $\mathrm{ASTB} \uparrow$ in external fetch	trdast		0.8tcy - 60	1.2tcr	ns
Hold time from $\overline{\mathrm{RD}} \uparrow$ to address in external fetch	trdadh		0.8tcy - 60	$1.2 \mathrm{tcy}+120$	ns
Write data output time from $\overline{\mathrm{RD}} \uparrow$	trowd		40		ns
Write data output time from $\overline{\mathrm{WR}} \downarrow$	twrwd		40	240	ns
Hold time from $\overline{\mathrm{WR}} \uparrow$ to address	twradh		0.8tcy - 60	$1.2 \mathrm{tcr}+120$	ns
	twTRD		0.5 tcr	$2.5 \mathrm{tcr}+100$	ns
Delay time from $\overline{\text { WAIT }} \uparrow$ to $\overline{\mathrm{WR}} \uparrow$	twiwr		0.5 tcr	$2.5 \mathrm{tcr}+100$	ns

Caution Tcy can only be used when the MIN. value is $\mathbf{1 . 6} \boldsymbol{\mu}$ s.
Remarks 1. $\mathrm{tcy}=\mathrm{Tcy} / 4$
2. n indicates the number of waits.
3. $C L=100 \mathrm{pF}$ (CL is the load capacitance of the AD0 to AD7, A8 to $A 15, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{WAIT}}$, and ASTB pins.)
(3) Serial Interface ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)
(a) 3-wire serial I/O mode (SCK30... Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK30 }}$ cycle time	tkcy1	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	954			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	1600			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	3200			ns
$\overline{\text { SCK30 }}$ high-/ low-level width		$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	tkcrı $/ 2-50 ~_{\text {- }}$			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	tкıү1/2-100			ns
SI30 setup time (to $\overline{\mathrm{SCK} 30} \uparrow$)	tsik1	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	100			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	150			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	300			ns
SI3n hold time (from SCK30 \uparrow)	tksı1		400			ns
Delay time from SCK30 \downarrow to SO30 output	tksot	$\mathrm{C}=100 \mathrm{pF}^{\text {Note }}$			300	ns

Note C is the load capacitance of the SCK30 and SO30 output lines.
(b) 3-wire serial I/O mode (SCK30... External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK30 }}$ cycle time	tkcy2	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	800			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	1600			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\text {do }}<2.7 \mathrm{~V}$	3200			ns
$\overline{\text { SCK30 }}$ high-/ low-level width	tкH2, tkL2	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	400			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {dD }}<4.0 \mathrm{~V}$	800			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	1600			ns
SI30 setup time (to SCK30 \uparrow)	tsık2		100			ns
SI30 hold time (from SCK30 \uparrow)	tкSI2		400			ns
Delay time from SCK30 \downarrow to SO30 output	tksoz	$\mathrm{C}=100 \mathrm{pF}^{\text {Note }}$			300	ns

Note C is the load capacitance of the SO30 output line.
(c) UART mode (dedicated baud-rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			131031	bps
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			78125	bps
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			39063	bps

(d) UART mode (external clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK0 cycle time	tксү3	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	800			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	1600			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	3200			ns
ASCK0 high-/low-level width	tкнз, tкı3	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	400			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	800			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	1600			ns
Transfer rate		$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			39063	bps
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			19531	bps
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			9766	bps

(e) UART mode (infrared data transfer mode)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Transfer rate		$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		131031	bps
Allowable bit rate error		$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		± 0.87	$\%$
Output pulse width		$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	1.2	$0.24 / \mathrm{fbr} \mathrm{Note}$	$\mu \mathrm{s}$
Input pulse width	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	$4 / \mathrm{fx}$		$\mu \mathrm{s}$	

Note fbr: Specified baud rate

(f) $I^{2} C$ bus mode

Parameter		Symbol	Standard Mode		High-Speed Mode		Unit	
		MIN.	MAX.	MIN.	MAX.			
SCL0 clock frequency			fclk	0	100	0	400	kHz
Bus free time (between stop and start condition)		tbuF	4.7	-	1.3	-	$\mu \mathrm{s}$	
Hold time ${ }^{\text {Note } 1}$		thd:STA	4.0	-	0.6	-	$\mu \mathrm{s}$	
SCLO clock low-level width		tıow	4.7	-	1.3	-	$\mu \mathrm{S}$	
SCL0 clock high-level width		thigh	4.0	-	0.6	-	$\mu \mathrm{s}$	
Start/restart condition setup time		tsu:STA	4.7	-	0.6	-	$\mu \mathrm{s}$	
Data hold time	CBUS compatible master	thD:DAT	5.0	-	-	-	$\mu \mathrm{s}$	
	$\mathrm{I}^{2} \mathrm{C}$ bus		$0^{\text {Note } 2}$	-	$0^{\text {Note } 2}$	0.9 Note 3	$\mu \mathrm{s}$	
Data setup time		tsu:DAT	250	-	$100^{\text {Note } 4}$	-	ns	
SDA0 and SCL0 signal rise time		tr_{R}	-	1,000	$20+0.1 \mathrm{Cb}^{\text {Note } 5}$	300	ns	
SDA0 and SCL0 signal fall time		tF	-	300	$20+0.1 \mathrm{Cb}^{\text {Note } 5}$	300	ns	
Stop condition setup time		tsu:sto	4.0	-	0.6	-	$\mu \mathrm{s}$	
Spike pulse width controlled by input filter		tsp	-	-	0	50	ns	
Capacitive load per each bus line		Cb	-	400	-	400	pF	

Notes 1. In the start condition, the first clock pulse is generated after this hold time.
2. To fill in the undefined area of the SCLO falling edge, it is necessary for the device to internally provide at least 300 ns of hold time for the SDAO signal (which is ViHmin. of the SCLO signal).
3. If the device does not extend the SCLO signal low hold time (tLow), only maximum data hold time thD:DAT needs to be fulfilled.
4. The high-speed mode $I^{2} C$ bus is available in a standard mode $I^{2} C$ bus system. At this time, the conditions described below must be satisfied.

- If the device does not extend the SCLO signal low state hold time
tsu:DAT $\geq 250 \mathrm{~ns}$
- If the device extends the SCLO signal low state hold time

Be sure to transmit the next data bit to the SDA0 line before the SCLO line is released (trmax. + tsu:DAT $=1,000+250=1,250 \mathrm{~ns}$ by standard mode $\mathrm{I}^{2} \mathrm{C}$ bus specification).
5. Cb : Total capacitance per one bus line (unit: pF)
A / D Converter Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=\mathrm{AVDD}=1.8$ to 5.5 V , $\mathrm{AVss}=\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			10	10	10	bit
Overall errorNote		$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }} \leq 5.5 \mathrm{~V}$		± 0.2	± 0.4	\%FSR
		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<4.0 \mathrm{~V}$		± 0.3	± 0.6	\%FSR
		$1.8 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<2.7 \mathrm{~V}$		± 0.6	± 1.2	\%FSR
Conversion time	tconv	$4.5 \mathrm{~V} \leq \mathrm{AV}$ DD $\leq 5.5 \mathrm{~V}$	12		96	$\mu \mathrm{s}$
		$4.0 \mathrm{~V} \leq \mathrm{AVDD}<4.5 \mathrm{~V}$	14		96	$\mu \mathrm{s}$
		$2.7 \mathrm{~V} \leq \mathrm{AV}$ DD $<4.0 \mathrm{~V}$	17		96	$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{AV}$ DD $<2.7 \mathrm{~V}$	28		96	$\mu \mathrm{s}$
Zero-scale error ${ }^{\text {Notes 1, }} 2$		$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }} \leq 5.5 \mathrm{~V}$			± 0.4	\%FSR
		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }}<4.0 \mathrm{~V}$			± 0.6	\%FSR
		$1.8 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<2.7 \mathrm{~V}$			± 1.2	\%FSR
Full-scale error ${ }^{\text {Notes 1, }} 2$		$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }} \leq 5.5 \mathrm{~V}$			± 0.4	\%FSR
		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<4.0 \mathrm{~V}$			± 0.6	\%FSR
		$1.8 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<2.7 \mathrm{~V}$			± 1.2	\%FSR
Integral linearity error ${ }^{\text {Note } 1}$		$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }} \leq 5.5 \mathrm{~V}$			± 2.5	LSB
		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<4.0 \mathrm{~V}$			± 4.5	LSB
		$1.8 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<2.7 \mathrm{~V}$			± 8.5	LSB
Differential linearity error		$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {ReF }} \leq 5.5 \mathrm{~V}$			± 1.5	LSB
		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }} \leq 4.0 \mathrm{~V}$			± 2.0	LSB
		$1.8 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<2.7 \mathrm{~V}$			± 3.5	LSB
Analog input voltage	Vian		0		AVref	V
Reference voltage	AV ${ }_{\text {ref }}$		1.8		AV ${ }_{\text {dD }}$	V
Resistance between $A V_{\text {ref }}$ and $A V s s$	Rref	During A/D conversion operation	20	40		$\mathrm{k} \Omega$

Notes 1. Excluding quantization error ($\pm 1 / 2$ LSB).
2. Indicated as a ratio to the full-scale value (\%FSR).

Remark When the μ PD78F0034BY is used as an 8-bit resolution A/D converter, the specifications are the same as for the μ PD780024AY Subseries A/D converter.

Remark The impedance of the analog input pins is shown below.
[Equivalent circuit]

[Parameter value]

AV DD	R 1	R 2	C 1	C 2	C 3
2.7 V	$12 \mathrm{k} \Omega$	$8.0 \mathrm{k} \Omega$	3.0 pF	3.0 pF	2.0 pF
4.5 V	$4 \mathrm{k} \Omega$	$2.7 \mathrm{k} \Omega$	3.0 pF	1.4 pF	2.0 pF

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics ($\mathrm{TA}_{\mathrm{A}}=\mathbf{- 4 0}$ to $\mathbf{+ 8 5 ^ { \circ }} \mathbf{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VdDDR		1.6		5.5	V
Data retention supply current	Iddor	Subsystem clock stop (XT1 = VDD) and feed-back resistor disconnected		0.1	30	$\mu \mathrm{A}$
Release signal set time	tsrel		0			$\mu \mathrm{s}$
Oscillation stabilization wait time	twait	Release by RESET		$2^{17} / \mathrm{fx}$		s
		Release by interrupt request		Note		s

Note Selection of $2^{12 / f x}$ and $2^{14} / \mathrm{fx}$ to $2^{17} / \mathrm{fx}$ is possible using bits 0 to 2 (OSTSO to OSTS2) of the oscillation stabilization time select register (OSTS).

Flash Memory Programming Characteristics ($\mathrm{T}_{\mathrm{A}}=+10$ to $+40^{\circ} \mathrm{C}, \mathrm{VdD}=1.8$ to 5.5 V , Vss $=\mathrm{AVss}=0 \mathrm{~V}$)
(1) Write erase characteristics

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Operating frequency	$f^{\text {x }}$	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			1.0		10.0	MHz
		$3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$			1.0		8.38	MHz
		$1.8 \mathrm{~V} \leq \mathrm{VDD}<3.0 \mathrm{~V}$			1.0		1.25	MHz
VPP supply voltage	VPP2	During flash memory programming			9.7	10.0	10.3	V
Vod supply current	IdD	When$V_{P P}=V_{P P 2}$	10 MHz crystal oscillation operating mode	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$			30	mA
			8.38 MHz crystal	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$			24	mA
			oscillation operating mode	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$			17	mA
VPP supply current	Ipp	When $\mathrm{V}_{\text {PP }}=\mathrm{V}_{\text {PP2 }}$					100	mA
Step erase time ${ }^{\text {Note } 1}$	Ter				0.199	0.2	0.201	s
Overall erase time ${ }^{\text {Note } 2}$	Tera	When step erase time $=0.2 \mathrm{~s}$					20	s/chip
Writeback time ${ }^{\text {Note } 3}$	$\mathrm{T}_{\text {wb }}$				49.4	50	50.6	ms
Number of writebacks per writeback command ${ }^{\text {Note } 4}$	$\mathrm{C}_{\text {wb }}$	When writeback time $=50 \mathrm{~ms}$					60	Times
Number of erases/writebacks	Cerwb						16	Times
Step write time ${ }^{\text {Note } 5}$	Twr				48	50	52	$\mu \mathrm{s}$
Overall write time per word ${ }^{\text {Note } 6}$	Twrw	When step write time $=50 \mu \mathrm{~s}$ (1 word = 1 byte)			48		520	$\mu \mathrm{s}$
Number of rewrites per chip ${ }^{\text {Note } 7}$	Cerwb	1 erase +1 write after erase $=1$ rewrite					20	Times

Notes 1. The recommended setting value of the step erase time is 0.2 s .
2. The prewrite time before erasure and the erase verify time (writeback time) are not included.
3. The recommended setting value of the writeback time is 50 ms .
4. Writeback is executed once by the issuance of the writeback command. Therefore, the number of retries must be the maximum value minus the number of commands issued.
5. The recommended setting value of the step write time is $50 \mu \mathrm{~s}$.
6. The actual write time per word is 100μ s longer. The internal verify time during or after a write is not included.
7. When a product is first written after shipment, "erase \rightarrow write" and "write only" are both taken as one rewrite.
$\begin{array}{ll}\text { Example: } & \mathrm{P}: \text { Write, } \mathrm{E}: \text { Erase } \\ & \text { Shipped product } \rightarrow \mathrm{P} \rightarrow \mathrm{E} \rightarrow \mathrm{P} \rightarrow \mathrm{E} \rightarrow \mathrm{P}: 3 \text { rewrites } \\ & \text { Shipped product } \rightarrow \mathrm{E} \rightarrow \mathrm{P} \rightarrow \mathrm{E} \rightarrow \mathrm{P} \rightarrow \mathrm{E} \rightarrow \mathrm{P}: 3 \text { rewrites }\end{array}$
(2) Serial write operation characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VPP set time	tpsron	VPP high voltage	1.0			$\mu \mathrm{s}$
Set time from $\mathrm{V}_{\text {DD }} \uparrow$ to $\mathrm{VPP} \uparrow$	tDRPSR	VPP high voltage	10			$\mu \mathrm{S}$
Set time from Vpp \uparrow to $\overline{\mathrm{RESET}} \uparrow$	tpSRRF	Vpp high voltage	1.0			$\mu \mathrm{s}$
VPP count start time from RESET \uparrow	tracF		1.0			$\mu \mathrm{s}$
Count execution time	tcount				2.0	ms
VPP counter high-level width	tch		8.0			$\mu \mathrm{s}$
Vpp counter low-level width	tcL		8.0			$\mu \mathrm{s}$
VPP counter noise elimination width	tnFw			40		ns

9.3 Timing Chart

AC Timing Test Point (Excluding X1, XT1 Input)

Clock Timing

TI Timing

TIOO, TIO1

TI50, TI51

Interrupt Request Input Timing

RESET Input Timing

Read/Write Operation

External fetch (no wait):

External fetch (wait insertion):

External data access (no wait):

External data access (wait insertion):

Serial Transfer Timing

3-wire serial I/O mode:

Remarks 1. $m=1,2$
2. $\mu \mathrm{PD} 78 \mathrm{~F} 0034 \mathrm{~B}$ and $78 \mathrm{~F} 0034 \mathrm{~B}(\mathrm{~A}): \quad \mathrm{n}=0,1$
3. $\mu \mathrm{PD} 78 \mathrm{~F} 0034 \mathrm{BY}$ and $78 \mathrm{~F} 0034 \mathrm{BY}(\mathrm{A}): \mathrm{n}=0$

UART mode (external clock input):

$I^{2} \mathrm{C}$ bus mode (μ PD78F0034BY only):

Data Retention Timing (STOP Mode Release by $\overline{\text { RESET }}$)

Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Request Signal)

Flash Memory Write Mode Set Timing

10. PACKAGE DRAWINGS

64-PIN PLASTIC LQFP (10x10)

detail of lead end

NOTE
Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	12.0 ± 0.2
B	10.0 ± 0.2
C	10.0 ± 0.2
D	12.0 ± 0.2
F	1.25
G	1.25
H	0.22 ± 0.05
I	0.08
J	$0.5($ T.P. $)$
K	1.0 ± 0.2
L	0.5
M	$0.17_{-0}^{+0.03}$
N	0.08
P	1.4
Q	0.1 ± 0.05
R	$3^{\circ}{ }_{-3}{ }^{\circ}{ }^{\circ}$
S	1.5 ± 0.10
T	0.25
U	0.6 ± 0.15
	S64GB-50-8EU-2

Remark The package and material of ES products are the same as mass produced products.

64-PIN PLASTIC LQFP (14x14)

Remark The package and material of ES products are the same as mass produced products.

64-PIN PLASTIC TQFP (12x12)

Remark The package and material of ES products are the same as mass produced products.

73-PIN PLASTIC FBGA (9x9)

	(UNIT:mm)
ITEM	DIMENSIONS
D	9.00 ± 0.10
E	9.00 ± 0.10
w	0.20
A	1.28 ± 0.10
A1	0.35 ± 0.06
A2	0.93
e	0.80
b	$0.50_{-0.05}^{+0.05}$
x	0.08
y	0.10
$y 1$	0.20
ZD	1.30
$Z E$	1.30
	P73F1-80-CN3

Remark The external dimensions and materials of the ES version are the same as those of the mass-produced version.

11. RECOMMENDED SOLDERING CONDITIONS

The μ PD78F0034B, 78 F 0034 BY , $78 \mathrm{~F} 0034 \mathrm{~B}(\mathrm{~A})$, and $78 \mathrm{~F} 0034 \mathrm{BY}(\mathrm{A})$ should be soldered and mounted under the following recommended conditions.

For details of the recommended soldering conditions, refer to the document Semiconductor Device Mounting Technology Manual (C10535E).

For soldering methods and conditions other than those recommended below, contact an NEC Electronics sales representative.

Table 11-1. Surface Mounting Type Soldering Conditions (1/2)

```
(1) }\mu\mathrm{ PD78F0034BGB-8EU: 64-pin plastic LQFP (10 x 10)
\muPD78F0034BGB(A)-8EU: 64-pin plastic LQFP (10 x 10)
\muPD78F0034BYGB-8EU: 64-pin plastic LQFP (10 x 10)
\muPD78F0034BYGB(A)-8EU: 64-pin plastic LQFP (10 x 10)
```

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Time: 30 seconds max. (at $210^{\circ} \mathrm{C}$ or higher), Count: Two times or less, Exposure limit: 7 days ${ }^{\text {Note }}$ (after 7 days, prebake at $125^{\circ} \mathrm{C}$ for 10 hours)	IR35-107-2
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Time: 40 seconds max. (at $200^{\circ} \mathrm{C}$ or higher), Count: Two times or less, Exposure limit: 7 days ${ }^{\text {Note }}$ (after 7 days, prebake at $125^{\circ} \mathrm{C}$ for 10 hours)	VP15-107-2
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ max., Time: 3 seconds max. (per pin row)	-

Note After opening the dry pack, store it at $25^{\circ} \mathrm{C}$ or less and 65% RH or less for the allowable storage period.
Caution Do not use different soldering methods together (except for partial heating).
(2) $\begin{array}{ll}\mu \text { PD78F0034BGC-8BS: } & \text { 64-pin plastic LQFP }(14 \times 14) \\ \mu \text { PD78F0034BGC(A)-8BS: } & 64 \text {-pin plastic LQFP }(14 \times 14) \\ \mu \text { PD78F0034BYGC-8BS: } & 64-\text { pin plastic LQFP }(14 \times 14) \\ \mu \text { PD78F0034BYGC(A)-8BS: } & 64-\text { pin plastic LQFP }(14 \times 14)\end{array}$

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Time: 30 seconds max. (at $210^{\circ} \mathrm{C}$ or higher), Count: Two times or less	IR35-00-2
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Time: 40 seconds max. (at $200^{\circ} \mathrm{C}$ or higher), Count: Two times or less	VP15-00-2
Wave soldering	Solder bath temperature: $260^{\circ} \mathrm{C}$ max., Time: 10 seconds max., Count: Once, Preheating temperature: $120^{\circ} \mathrm{C}$ max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ max., Time: 3 seconds max. (per pin row)	-

Caution Do not use different soldering methods together (except for partial heating).

Table 11-1. Surface Mounting Type Soldering Conditions (2/2)
(3) μ PD78F0034BGK-9ET: \quad 64-pin plastic TQFP (12 x 12)
μ PD78F0034BGK(A)-9ET: 64-pin plastic TQFP (12 x 12)
μ PD78F0034BYGK-9ET: 64-pin plastic TQFP (12×12)
μ PD78F0034BYGK(A)-9ET: 64-pin plastic TQFP (12 x 12)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Time: 30 seconds max. (at $210^{\circ} \mathrm{C}$ or higher), Count: Two times or less, Exposure limit: 7 days ${ }^{\text {Note }}$ (after 7 days, prebake at $125^{\circ} \mathrm{C}$ for 10 hours)	IR35-107-2
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Time: 40 seconds max. (at $200^{\circ} \mathrm{C}$ or higher), Count: Two times or less, Exposure limit: 7 days ${ }^{\text {Note }}$ (after 7 days, prebake at $125^{\circ} \mathrm{C}$ for 10 hours)	VP15-107-2
Wave soldering	Solder bath temperature: $260^{\circ} \mathrm{C}$ max., Time: 10 seconds max., Count: Once, Preheating temperature: $120^{\circ} \mathrm{C}$ max. (package surface temperature), Exposure limit: 7 days ${ }^{\text {Note }}$ (after 7 days, prebake at $125^{\circ} \mathrm{C}$ for 10 hours)	WS60-107-1
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ max., Time: 3 seconds max. (per pin row)	-

Note After opening the dry pack, store it at $25^{\circ} \mathrm{C}$ or less and $65 \% \mathrm{RH}$ or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).
(4) μ PD78F0034BF1-CN3: 73-pin plastic FBGA (9 x 9)
μ PD78F0034BYF1-CN3: 73-pin plastic FBGA (9 x 9)

Soldering Method	Soldering Conditions	$\begin{array}{c}\text { Recommended } \\ \text { ConditionSymbol }\end{array}$		
Infrared reflow	$\begin{array}{l}\text { Package peak temperature: } 260^{\circ} \mathrm{C} \text {, Time: } 60 \text { seconds max. (at } 220^{\circ} \mathrm{C} \text { or higher), } \\ \text { Count: Three times or less, } \\ \text { Exposure limit: } 3 \text { days }\end{array}$	IR600-203-3 (after that, prebake at $125^{\circ} \mathrm{C}$ for 20 hours)	$]$	Vackage peak temperature: $215^{\circ} \mathrm{C}$, Time: 40 seconds max. (at $200^{\circ} \mathrm{C}$ or higher),
:---				
Count: Three times or less,				
Exposure limit: 3 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 20 hours)				

Note After opening the dry pack, store it at $25^{\circ} \mathrm{C}$ or less and $65 \% \mathrm{RH}$ or less for the allowable storage period.

Caution Do not use different soldering methods together.

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD780034B, 780034BY.
Also refer to (6) Cautions on Using Development Tools.
(1) Software Package

SP78K0	CD-ROM in which various software tools for $78 \mathrm{~K} / 0$ package

(2) Language Processing Software

RA78K0	Assembler package common to $78 \mathrm{~K} / 0$ Series
CC78K0	C compiler package common to $78 \mathrm{~K} / 0$ Series
DF780034	Device file for μ PD780034A, 780034AY Subseries
CC78K0-L	C compiler library source file common to $78 \mathrm{~K} / 0$ Series

(3) Flash Memory Writing Tools

Flashpro III (FL-PR3, PG-FP3)	Flash programmer dedicated to microcontrollers with on-chip flash memory
Flashpro IV (FL-PR4, PG-FP4)	
FA-64GB-8EU	Adapter for flash memory writing used connected to the Flashpro III/Flashpro IV.
FA-64GC-8BS-A	-FA-64GB-8EU: 64-pin plastic LQFP (GB-8EU type)
FA-64GK-9ET	-FA-64GC-8BS-A: 64-pin plastic LQFP (GC-8BS type)
FA-73F1-CN3-A	-FA-64GK-9ET: 64-pin plastic TQFP (GK-9ET type)
	-FA-73F1-CN3-A: 73-pin plastic FBGA (F1-CN3 type)

(4) Debugging Tools

- When using in-circuit emulator IE-78K0-NS

IE-78K0-NS	In-circuit emulator common to 78K/0 Series
IE-70000-MC-PS-B	Power supply unit for IE-78K0-NS
IE-78K0-NS-PA	Performance board to enhance and expand the functions of IE-78K0-NS
IE-70000-98-IF-C	Adapter required when using PC-9800 series as host machine (excluding notebook PCs) (C bus supported)
IE-70000-CD-IF-A	PC card and interface cable when using notebook PC as host machine (PCMCIA socket supported)
IE-70000-PC-IF-C	Adapter required when using IBM PC/ATTM or compatible as host machine (ISA bus supported)
IE-70000-PCI-IF-A	Adapter required when using PC in which PCI bus is incorporated as host machine
IE-780034-NS-EM1	Emulation board to emulate μ PD780034A, 780034AY Subseries
NP-64GC	Emulation probe for 64-pin plastic LQFP (GC-8BS type)
NP-64GC-TQ	Emulation probe for 64-pin plastic TQFP (GK-9ET type)
NP-H64GC-TQ	Emulation probe for 64-pin plastic LQFP (GB-8EU type)
NP-64GK NP-H64GK-TQ	Emulation probe for 73-pin plastic FBGA (F1-CN3 type)
NP-H64GB-TQ	Conversion socket to connect the NP64GC and a target system board on which a 64-pin plastic LQFP (GC-8BS type) can be mounted.
NP-73F1-CN3Note	Conversion adapter to connect the NP-64GC-TQ or NP-H64GC-TQ and a target system board on which a 64-pin plastic LQFP (GC-8BS type) can be mounted
EV-9200GC-64	Conversion adapter to connect the NP-64GK or NP-H64GK-TQ and a target system on which a 64- pin plastic TQFP (GK-9ET type) can be mounted
TGC-064SAP	Conversion socket to connect the NP-H64GB-TQ and a target system board on which a 64-pin plastic LQFP (GB-8EU type) can be mounted
TGK-064SBW	Conversion socket to connect the NP-73F1-CN3 and a target system board on which a 73-pin plastic FBGA (F1-CN3 type) can be mounted
TGB-064SDP	Integrated debugger for IE-78K0-NS
CSICE73A0909N01, CSSOCKET73A0909N01	System simulator common to 78K/0 Series
SM78K0-NS	Device file for μ PD780034A, 780034AY Subseries
DF780034	EM0909N01,

Note The conversion socket (CSICE73A0909N01, LSPACK73A0909N01, or CSSOCKET73A0909N01) is supplied with the emulation probe (NP-73F1-CN3).

- When using in-circuit emulator IE-78001-R-A

IE-78001-R-A	In-circuit emulator common to 78K/0 Series
IE-70000-98-IF-C	Adapter required when using PC-9800 series as host machine (excluding notebook PCs) (C bus supported)
IE-70000-PC-IF-C	Interface adapter when using IBM PC/AT or compatible as host machine (ISA bus supported)
IE-70000-PCI-IF-A	Adapter required when using PC in which PCI bus is incorporated as host machine
IE-780034-NS-EM1	Emulation board to emulate μ PD780034A, 780034AY Subseries
IE-78K0-R-EX1	Emulation probe conversion board necessary when using IE-780034-NS-EM1 on IE-78001-R-A
EP-78240GC-R	Emulation probe for 64-pin plastic LQFP (GC-8BS type)
EP-78012GK-R	Emulation probe for 64-pin plastic TQFP (GK-9ET type)
EV-9200GC-64	Conversion socket to connect the EP-78240GC-R and a target system board on which a 64-pin plastic LQFP (GC-8BS type) can be mounted
TGK-064SBW	Conversion adapter to connect the EP-78012GK-R and a target system board on which a 64-pin plastic TQFP (GK-9ET type) can be mounted
ID78K0	Integrated debugger for IE-78001-R-A
SM78K0	System simulator common to 78K/0 Series
DF780034	Device file for μ PD780034A, 780034AY Subseries

(5) Real-Time OS

RX78K0	Real-time OS for $78 \mathrm{~K} / 0$ Series

Caution The 64-pin plastic LQFP (GB-8EU type) and 73-pin plastic FBGA (F1-CN3 type) do not support the IE-78001-R-A.

(6) Cautions on Using Development Tools

- The ID78K0-NS, ID78K0, and SM78K0 are used in combination with the DF780034.
- The CC78K0 and RX78K0 are used in combination with the RA78K0 and the DF780034.
- FL-PR3, FL-PR4, FA-64GC-8BS-A, FA-64GB-8EU, FA-64GK-9ET, FA-73F1-CN3-A, NP-64GC, NP-64GCTQ, NP-H64GC-TQ, NP-64GK, NP-H64GK-TQ, NP-H64GB-TQ, and NP-73F1-CN3 are products made by Naito Densei Machida Mfg. Co., Ltd. (+81-45-475-4191).
- TGC-064SAP, TGK-064SBW, TGB-064SDP, CSICE73A0909N01, LSPACK73A0909N01, and CSSOCKET73A0909N01 are products made by TOKYO ELETECH CORPORATION.
Contact: Daimaru Kogyo, Ltd.
Tokyo Electronic Division (+81-3-3820-7112)
Osaka Electronic Division (+81-6-6244-6672)
- For third-party development tools, see the Single-chip Microcontroller Development Tool Selection Guide (U11069E).
- The host machines and OSs supporting each software are as follows.

Host Machine	PC	EWS
	PC-9800 series [Japanese Windows ${ }^{\text {TM }}$] IBM PC/AT and compatibles [Japanese/English Windows]	$\begin{gathered} \text { HP9000 series } 700^{\text {TM }}\left[\mathrm{HP}^{2}-\text { UX }^{\mathrm{TM}]}\right. \\ \text { SPARCstation }^{\text {TM }}\left[\text { SunOS }^{\mathrm{TM}} \text {, Solaris }{ }^{\text {TM }] ~}\right. \end{gathered}$
RA78K0	$\sqrt{ }$ Note	\checkmark
CC78K0	$\sqrt{ }$ Note	\checkmark
ID78K0-NS	\checkmark	-
ID78K0	\checkmark	-
SM78K0	\checkmark	-
RX78K0	$\sqrt{ }$ Note	$\sqrt{ }$

Note DOS-based software

Conversion Socket Drawing (EV-9200GC-64) and Footprints

Figure A-1. EV-9200GC-64 Drawing (For Reference Only)

EV-9200GC-64-G0

ITEM	MILLIMETERS	INCHES
A	18.8	0.74
B	14.1	0.555
C	14.1	0.555
D	18.8	0.74
E	$4-$ C 3.0	$4-$ C 0.118
F	0.8	0.031
G	6.0	0.236
H	15.8	0.622
I	18.5	0.728
J	6.0	0.236
K	15.8	0.622
L	18.5	0.728
M	8.0	0.315
N	7.8	0.307
O	2.5	0.098
P	2.0	0.079
Q	1.35	0.053
R	0.35 ± 0.1	$0.014_{-0.005}^{+0.04}$
S	$\phi 2.3$	$\phi 0.091$
T	$\phi 1.5$	$\phi 0.059$
P		

Figure A-2. EV-9200GC-64 Footprints (For Reference Only)

EV-9200GC-64-P1E		
ITEM	MILLIMETERS	INCHES
A	19.5	0.768
B	14.8	0.583
C	$0.8 \pm 0.02 \times 15=12.0 \pm 0.05$	$0.031_{-0.001}^{+0.002} \times 0.591=0.472_{-0.002}^{+0.003}$
D	$0.8 \pm 0.02 \times 15=12.0 \pm 0.05$	$0.031_{-0.001}^{+0.002} \times 0.591=0.472_{-0.002}^{+0.003}$
E	14.8	0.583
F	19.5	0.768
G	6.00 ± 0.08	$0.236_{-0.003}^{+0.004}$
H	6.00 ± 0.08	$0.236_{-0.003}^{+0.004}$
I	0.5 ± 0.02	$0.197_{-0.002}^{+0.001}$
J	$\phi 2.36 \pm 0.03$	$\phi 0.093_{-0.002}^{+0.001}$
K	$\phi 2.2 \pm 0.1$	$\phi 0.087_{-0.000}^{+0.004}$
L	$\phi 1.57 \pm 0.03$	$\phi 0.062_{-0.002}^{+0.001}$

Caution DimensionsofmountpadforEV-9200andthatfortargetdevice (QFP) may be different in some parts. For the recommended mountpaddimensionsforQFP,referto"SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (C10535E).

Conversion Adapter Drawing (TGC-064SAP)

Figure A-3. TGC-064SAP Drawing (For Reference Only)

ITEM	MILLIMETERS	INCHES
A	14.12	0.556
B	$0.8 \times 15=12.0$	$0.031 \times 0.591=0.472$
C	0.8	0.031
D	20.65	0.813
E	10.0	0.394
F	12.4	0.488
G	14.8	0.583
H	17.2	0.677
I	C 2.0	C 0.079
J	9.05	0.356
K	5.0	0.197
L	13.35	0.526
M	1.325	0.052
N	1.325	0.052
O	16.0	0.630
P	20.65	0.813
Q	12.5	0.492
R	17.5	0.689
S	$4-\phi 1.3$	$4-\phi 0.051$
T	1.8	0.071
U	$\phi 3.55$	$\phi 0.140$
V	$\phi 0.9$	$\phi 0.035$
W	$\phi 0.3$	$\phi 0.012$
X	(19.65)	(0.667)
Y	7.35	0.289
Z	1.2	0.047

ITEM	MILLIMETERS	INCHES
a	1.85	0.073
b	3.5	0.138
c	2.0	0.079
d	6.0	0.236
e	0.25	0.010
f	13.6	0.535
g	1.2	0.047
h	1.2	0.047
i	2.4	0.094
j	2.7	0.106
		TGC-064SAP-G0E

note: Product by TOKYO ELETECH CORPORATION.

Conversion Adapter Drawing (TGK-064SBW)

Figure A-4. TGK-064SBW Drawing (For Reference Only) (Unit: mm)

ITEM	MILLIMETERS	INCHES
A	18.4	0.724
B	$0.65 \times 15=9.75$	$0.026 \times 0.591=0.384$
C	0.65	0.026
D	7.75	0.305
E	10.15	0.400
F	12.55	0.494
G	14.95	0.589
H	$0.65 \times 15=9.75$	$0.026 \times 0.591=0.384$
I	11.85	0.467
J	18.4	0.724
K	C 2.0	C 0.079
L	12.45	0.490
M	10.25	0.404
N	7.7	0.303
O	10.02	0.394
P	14.92	0.587
Q	11.1	0.437
R	1.45	0.057
S	1.45	0.057
T	$4-\phi 1.3$	$4-\phi 0.051$
U	1.8	0.071
V	5.0	0.197
W	$\phi 5.3$	$\phi 0.209$
X	$4-C 1.0$	$4-C 0.039$
Y	$\phi 3.55$	$\phi 0.140$
Z	$\phi 0.9$	$\phi 0.035$

ITEM	MILLIMETERS	INCHES
a	$\phi 0.3$	$\phi 0.012$
b	1.85	0.073
c	3.5	0.138
d	2.0	0.079
e	3.9	0.154
f	1.325	0.052
g	1.325	0.052
h	5.9	0.232
i	0.8	0.031
j	2.4	0.094
k	2.7	0.106
		TGK-064SBW-G1E

note: Product by TOKYO ELETECH CORPORATION.

APPENDIX B. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Devices

Document Name	Document No.
μ PD780024A, 780034A, 780024AY, 780034AY Subseries User's Manual	U14046E
μ PD780021A, 780022A, 780023A, 780024A, 780021AY, 780022AY, 780023AY, 780024AY Data Sheet	U14042E
μ PD780021A(A), 780022A(A), 780023A(A), 780024A(A), 780021AY(A), 780022AY(A), 780023AY(A),	U15131E
$780024 A Y(A)$ Data Sheet	U15132E
μ PD780031A, 780032A, 780033A, 780034A, 780031AY, 780032AY, 780033AY, 780034AY Data Sheet	U14044E
μ PD780031A(A), 780032A(A), 780033A(A), 780034A(A), 780031AY(A), 780032AY(A), 780033AY(A),	U151
$780034 A Y(A)$ Data Sheet	U14040E
μ PD78F0034A, 78F0034AY Data Sheet	This document
μ PD78F0034B, 78F0034BY, 78F0034B(A), 78F0034BY(A) Data Sheet	U12326E
$78 K / 0$ Series User's Manual Instruction	

Documents Related to Development Software Tools (User's Manuals)

Document Name		Document No.
RA78K0 Assembler Package	Operation	U14445E
	Language	U14446E
	Structured Assembly Language	U11789E
CC78K0 C Compiler	Operation	U14297E
	Language	U14298E
SM78K Series System Simulator Ver. 2.30 or Later	Operation (Windows Based)	U15373E
	External Part User Open Interface Specifications	U15802E
ID78K Series Integrated Debugger Ver. 2.30 or Later	Operation (Windows Based)	U15185E
RX78K0 Real-time OS	Fundamentals	U11537E
	Installation	U11536E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

Documents Related to Development Hardware Tools (User's Manuals)

Document Name	Document No.
IE-78K0-NS In-Circuit Emulator	U13731E
IE-78K0-NS-A In-Circuit Emulator	U14889E
IE-780034-NS-EM1 Emulation Board	U14642E
IE-78001-R-A In-Circuit Emulator	U14142E
IE-78K0-R-EX1 In-Circuit Emulator	To be prepared

Documents Related to Flash Memory Writing

Document Name	Document No.
PG-FP3 Flash Memory Programmer User's Manual	U13502E
PG-FP4 Flash Memory Programmer User's Manual	U15260E

Other Related Documents

Document Name	Document No.
SEMICONDUCTORS SELECTION GUIDE - Products \& Packages -	X13769E
Semiconductor Device Mounting Technology Manual	C10535E
Quality Grades on NEC Semiconductor Devices	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.
[MEMO]

NOTES FOR CMOS DEVICES

PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Note: Purchase of NEC Electronics $\mathrm{I}^{2} \mathrm{C}$ components conveys a license under the Philips $\mathrm{I}^{2} \mathrm{C}$ Patent Rights to use these components in an $I^{2} \mathrm{C}$ system, provided that the system conforms to the $I^{2} \mathrm{C}$ Standard Specification as defined by Philips.

[^2]
Regional Information

Some information contained in this document may vary from country to country. Before using any NEC Electronics product in your application, please contact the NEC Electronics office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics America, Inc. (U.S.) • Filiale Italiana
Santa Clara, California
Tel: 408-588-6000
800-366-9782
Fax: 408-588-6130
800-729-9288
NEC Electronics (Europe) GmbH
Duesseldorf, Germany
Tel: 0211-65 0301
Fax: 0211-65 03327

- Sucursal en España

Madrid, Spain
Tel: 091-504 2787
Fax: 091-504 2860

- Succursale Française

Vélizy-Villacoublay, France
Tel: 01-30-67 5800
Fax: 01-30-675899

Milano, Italy
Tel: 02-66 7541
Fax: 02-66 754299

- Branch The Netherlands

Eindhoven, The Netherlands
Tel: 040-244 5845
Fax: 040-244 4580

- Tyskland Filial

Taeby, Sweden
Tel: 08-63 80820
Fax: 08-63 80388

- United Kingdom Branch

Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044
NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics Shanghai, Ltd.
Shanghai, P.R. China
Tel: 021-6841-1138
Fax: 021-6841-1137
NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951
NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore
Tel: 6253-8311
Fax: 6250-3583

- The information in this document is current as of September, 2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.
(Note)
(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

[^0]: The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
 Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

[^1]: Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

[^2]: FIP and IEBus are trademarks of NEC Electronics Corporation.
 Windows is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.
 PC/AT is a trademark of International Business Machines Corporation.
 HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.
 SPARCstation is a trademark of SPARC International, Inc.
 Solaris and SunOS are trademarks of Sun Microsystems, Inc.

